
S
ometimes you’re faced with a brand new
system administration problem that you’ve
never met before; sometimes it’s an old
problem with a new twist. Either way, and

regardless of how many machines fall within your
sphere of responsibility, just keep a basic set of ideas
and processes in mind when you’re tracking that mysteri-
ous bug through a maze of twisty error messages.

Keeping Track
If you can only do one thing to simplify and speed up problem-
solving, keep notes. Clear notes are ideal, but any notes are better
than none. Start with a complete bug report of the situation, making
sure you’re clear on the following issues:
•	 What commands or situations trigger the problem? You need the exact

command or series of commands being used (or a clear and repeatable de-
scription of what the user does if it’s a GUI).

•	 What is the expected result?
•	 What is the actual result?
•	 Does it happen to many users or just one user?
•	 Does it happen on different machines or just one machine? (Both this and the pre-

vious question are particularly useful in narrowing down problems if you’re run-
ning any kind of centralized login or shared directory setup.)

•	 Does the problem happen if you’re in a local directory rather than a shared one (if
applicable)?

•	 Can you reproduce it reliably? (If not, keep investigating variables until you can, or
you’ll never know whether it’s really fixed.)

•	 What has the user tried so far to fix it?
If someone else is reporting the bug, this is a useful set of questions to ask before you
start looking for the problem. If it’s a bug you’ve found yourself, it’s still a useful
checklist to make sure you genuinely understand the problem you’re trying to fix
and, perhaps most importantly, what it will look like once you have fixed it.

Once you have a clear idea of the problem (see the “Ducks and Bears” box) and
have started looking for a solution, make a note every time you make any sort of a
change. If you make a handful of changes in a hurry, you can check your ~/.bash_
history file (if using Bash; other shells have a similarly named file) to remind yourself
what they were. However, the default settings for Bash history are not helpful if you

Problem-solving best practices for sys admins

Digging Deep
Whether you’re the sys admin of a home network or of a company-wide

network of dozens or even hundreds of machines, some basic principles of

debugging will come in handy. By Juliet Kemp

Rubber Duck debugging or Teddy Bear debugging relies on the fact that simply explain-
ing the problem to someone else is often enough for you to understand it yourself. The
other person doesn’t actually need to have any idea what you’re talking about; a rubber
duck or teddy bear works just as well as a real live human – possibly even better because
they’re better listeners than most humans.

 Ducks and Bears

Juliet Kemp is a systems administrator
and writer who has far more experience
than she’d like of tracking down bizarre,
and occasionally unrepeatable, bugs.

 Author

34

Cover Stories
Debugging for Admins

March 2012	 Issue 136	 linux-magazine.com | Linuxpromagazine.com	

034-037_bestpract.indd 34 1/17/12 12:00:01 PM

have multiple
terminals open. The de-

fault behavior is to overwrite the
history rather than to append, which

could mean you lose parts of your history if you’re
issuing commands in more than one terminal. If you add the
following lines

shopt ‑s histappend

PROMPT_COMMAND='history ‑n;history ‑a'

to your .bashrc file, you’ll change the setting to append rather
than to overwrite and also set the terminal to write to the his-
tory and reload it every time you press
Enter (PROMPT_COMMAND is executed every
time you hit Enter). This means you’ll
always have access in all terminals to all
recently executed commands. Also, you
might be able to make similar changes in
other shells; check the man page for
your shell.

If you’re editing a file, it’s also a good
idea to make a copy of the existing ver-
sion first. Ideally, you should be using a
version control system or some form of
centralized setup, like Puppet [1], for
your configuration files.

In the heat of bug fixing, you might
think you don’t need to keep notes as
you go because, of course, you’ll remem-
ber what you did. But, even if you do (in
which case, you have a better memory
than I), you won’t necessarily be able to

pinpoint the specific successful change(s) you made without
some sort of documentation. Also, you run the risk that what
looks like a two-minute fix will turn into a two-hour fix, by

which time the probability that you’ll remember exactly
what you’ve done has plummeted dramatically.

How you keep your notes, especially in the longer
term, is up to you and your personal preferences. A
physical notebook has long been a useful tool for any
kind of bug fixing and can be helpful for thinking

things through and jotting down ideas as they occur to
you. A more searchable long-term option is a wiki or

some form of electronic note system. If you do use a
physical notebook or pieces of paper in the immediate

moment, you might want to transfer a concise version of
the fix, once you’ve found it, to a wiki, for example. A prob-

lem that’s occurred once tends to occur again, and you don’t
want to have to go through the same process all over again.

Testing Hints
If you have more than one machine and only one of them is ex-
hibiting the problem, you have a great comparison test setup.
To begin, check the configuration of both machines and see if
that provides any clues as to what the problem might be.

If you’re comparing config files, some form of diff tool is es-
sential. The original, of course is diff, but you might prefer its
command-line cousin sdiff because it’s easier to read by
showing differences side by side, and it is a bit more configu-
rable. (diff ‑y achieves the same thing). The vimdiff or gvim‑
diff tools are also options; both use color to help show any dif-
ferences.

Emacs also has a diff mode (M‑x ediff‑buffers). If you prefer
a GUI, you could try Meld, Guiffy (which also works on Mac
and Linux), diffuse (Figure 1), TkDiff, or kdiff3. Other good
first-line tools to try first are ps, top, and df to check for obvi-
ous issues and then to compare with other machines. A signifi-
cant number of problems boil down to disk, memory, or CPU
issues.

As with bug-finding in coding, a good way to locate a bug in
a system is to create a test for it and then narrow down that

Figure 1: Diffuse showing the differences between two files.

35

Cover Stories
Debugging for Admins

linux-magazine.com | Linuxpromagazine.com	 Issue 136	 March 2012

034-037_bestpract.indd 35 1/17/12 12:00:08 PM

the relevant service or log in again as the user whose configu-
ration you’re changing.

Languages You Don’t Know
Sometimes you will find yourself trying to debug a program in
a language you don’t really know. If it’s fairly complicated,
your might want to recruit someone to help you (or make the
fix for you); however, you can try the following things first:

Back up. Make sure you back up the code before you start –
if you intend to make any changes at all.

Google the error messages. If you’re lucky, someone has al-
ready experienced this problem and discovered how to fix it.
You might be able to copy the fix straight in without learning
anything more about the code or the language.

Is it a compiled or an interpreted language? The distinction
is less firm than it once was, but it’s still useful to distinguish
between a compiled language, such as C or Java, in which
code is rendered into a machine-specific format before being
executed, and an interpreted language, such as PHP or Perl, in
which code is executed as you wrote it and rendered into ma-
chine-specific format at execution time. With compiled lan-
guages, you’ll have a source code file and an object code exe-
cutable, and to make changes, you need to edit the source
code, recompile it, and execute the resulting binary to test it:

> javac helloworld.java

> java helloworld

Hello, World!

With interpreted languages, you edit the code then run it di-
rectly:

> perl helloworld.pl

Hello, World!

To debug compiled languages, it’s a good idea to keep a copy
of both the source code and the object code before you start
messing around. Also, recompile the source and test it before
you start, just to make sure you really do have the correct
source code for your problem object code file.

Use a debugger. If you can use a decent debugger on the
code or program in question, this is a great place to start. Many

test as much as possible while the system still exhibits the
problem.

Here are a few questions to help you narrow down the possi-
bilities:
•	 Can you test a GUI program from the command line?
•	 Have you encountered a similar problem before?
•	 What happens if you shut down everything else running on

the same machine?
•	 What happens if you create a new user with a super-mini-

malist setup and try to reproduce the bug from there?
•	 What happens if you clear the user’s Bash/​tcsh configuration

(make sure you don’t lose it altogether…)?
•	 Can you create a stripped-down version of the problem situa-

tion?
•	 What happens if you temporarily turn off iptables or any

other firewalling/​networking security you have in place for
networking components?

If the problem is connected in any way to a service that you’re
running (e.g., Apache), another useful step when testing is to
boost logging output temporarily. Exactly how to do this will
vary between different pieces of software, but the main config
file will usually have a logging output option, and you can
check the appropriate man page or website for information on
which settings produce the most useful output (see also “Boot-
ing Up Gradually”).

Once you have your smallest possible test situation, you can
start making changes. To begin, make a single change, then
run the test again. If you make multiple changes at once, you’ll
come to a point at which you don’t know what made the cru-
cial difference. Make a note of what you did and what hap-
pened, then change something else and test again.

When running tests, be aware of a couple of things: If you’ve
been looking at multiple machines, make sure the change and
the test are happening on the same machine. Also, be certain
that the change has actually been applied and that the configu-
ration file (or whatever) has been re-read. If in doubt, restart

Boot problems, or problems with services that start automati-
cally, can be particularly difficult to deal with because the prob-
lem often occurs before you can get to it and fix it. (This is partic-
ularly true with firewall and security or login problems, which
can result in being locked out of the machine altogether.)

To get at these problems, try booting into /bin/sh rather than
init, which on most Linux distros is still the first task run by the
kernel to start up all your normal services. This way, you get a
basic shell prompt at a very early stage of boot. With GRUB, do
this by hitting e at the GRUB boot screen, then edit the boot line
that begins with kernel or linux (Figure 2). Add init=/bin/sh to
the end of that line and boot the system (on older versions of
GRUB, hit Return then b; on newer versions, press Ctrl+X). Be
aware that if you do this, you’ll have very few services up and
running, which is the point of the exercise. For debugging pur-
poses, you can start things up one by one, maximizing your
chances of locating the error as quickly as possible.

In this case, you definitely want to keep careful notes of anything
you change, and change it back again if it doesn’t do the trick be-
fore you reboot. Otherwise, you could simply create further
problems for yourself.

 Booting Up Gradually

Figure 2: Editing the bootup line on Debian Squeeze.

36

Cover Stories
Debugging for Admins

March 2012	 Issue 136	 linux-magazine.com | Linuxpromagazine.com	

034-037_bestpract.indd 36 1/17/12 12:00:09 PM

languages have a standard debugger available; if you don’t
have one that’s language specific, try gdb, which although a bit
archaic in some ways, basically works for several languages,
including C, C++, Java (if compiled with gcj), and Fortran. The
bt command is particularly useful if you’re using gdb because it
prints out a backward stack trace, which can help you to figure
out where the code is crashing (Figure 3). Setting breakpoints
(points where the code stops) with the break command can
also be useful, but be aware that this is only useful if the code
you’re looking at is non-iterative.

Add print lines. If you don’t have a debugger, you can try ed-
iting the code and adding some kind of print output. Check the
documentation or Google to find out how to add a print line for
a specific language to create your own “breakpoints”; add out-
put lines throughout the code until you narrow down the point
at which something is going wrong (between output lines D
and E, for example). You can also use output lines to check the
values of different variables or data structures.

Log. Logging is another option to get output from code.
Again, search the web for logging options for different lan-
guages.

Use the command line. If possible, run the problem program
from the command line and send output to the terminal.

Break down the source. Beyond breakpoints and printing
debug lines, another testing option that narrows down the
problem (especially if you can’t edit the code directly) is to
copy the source and cut it down as far as possible until you
have the problem and nothing else. In a large program, this
might not be possible.

Proceed carefully. Once you think you’ve tracked down the
problem, make a single change at a time before testing again.

Use tracing tools. Strace (which tracks system calls) can help
determine whether system calls are the source of the problem.

strace ‑o output.txt program

will get strace output to the file output.txt. Some editors (in-
cluding Vim) will do syntax highlighting for strace output,
which is helpful (Figure 4). Similarly, ltrace provides informa-
tion on library calls being made, these are both particularly
helpful if the problem has something to do with the interaction
of your code with the larger system. Even in other situations it
could give you useful context (e.g., if the program fails when
reading in a particular file, this suggests that the problem is ei-
ther with the file or with that section of code).

Get help. If you’re still stuck, talk to people who already
know the language. Some problems are easy to track down
with a little general knowledge and careful testing; some really
do need more specialised knowledge. If you’re asking for help,
make sure you’ve described the problem clearly; give the sort
of bug report you’d like to receive.

Avoiding Problems
The ideal solution, of course, is to avoid problems arising in
the first place. Although this is never going to be entirely possi-
ble, you can certainly do your best to minimize them.

A good testing regime whenever you’re making changes is
important. Test regularly as you install or change something,
and test on multiple machines, if possible. Good note-taking so
you’ll have something to jog your memory will help if you run
into a problem further down the line. Always write documen-
tation of any sort as if you’re writing for someone else because
in six months’ time, you’ll be someone else: someone who
doesn’t remember all that well what they did six months ago.

Keep config files in version control, or (if appropriate for
your setup) a centralized config management system such as
Puppet. This makes keeping track of your changes hugely eas-
ier, as long as you remember to use it every time!

If All Else Fails
Take a break. Sometimes all it takes to find the solution to a
problem is to walk away from it for a moment: Take the time to
have a drink of water, a cup of coffee, or a snack. nnn

Figure 3: gdb in action.

Figure 4: strace output from a Perl program. [1]	� Puppet: http://​projects.​puppetlabs.​com/

 Info

37

Cover Stories
Debugging for Admins

linux-magazine.com | Linuxpromagazine.com	 Issue 136	 March 2012

034-037_bestpract.indd 37 1/17/12 12:00:11 PM

