
broken into. Once the device is installed,
you can use

dd if=/dev/fmem U

 of=/root/system‑memory.dump

to dump the system memory.

kdump
Another way to get a system dump is to
use the kdump utility, which is in the
kexec‑tools package. When it is installed
and running, it will take some system
memory. However, it lets you quickly
and painlessly create dumps of the sys-
tem memory on local or remote filesys-
tems (using NFS or SCP). For really para-
noid environments, you might want to
consider dumping system memory once
in a while, then if you detect a break-in,
you will have dumps to use for compari-
son, and you also might be able to nar-
row down the attack time frame.

Swap Space
Note that all things living in memory
might not actually be in memory. Linux
aggressively caches unused data to swap
space, and data on heavily loaded sys-
tems often is moved out of memory and
into swap space (although this is less of
a problem now with cheap RAM). The
thing to remember is that data might still
be present in the swap space even if the
program using it was shut down, so at-
tackers’ data might remain even if they
tried to clean up their tracks. Dumping
swap space is easy: Just use the dd tool
to dump your swap partition to a file.

Examining the Contents
of Memory
If you simply open the memory dump in
a hex or other binary editor, it probably

T
ypically, when the term “data
rescue” is mentioned, failed
RAID arrays, accidentally deleted
files, and corrupted backups

come to mind. But, what happens when
a break-in occurs and you need to find
out how the attacker got in and how
much damage has been done?

If you’re lucky (relatively speaking),
the attacker will make changes to the
filesystem. For example, in the recent
kernel.org security breach, the OpenSSH
binaries were replaced with ones that
would log usernames, passwords, and
keys, allowing the attacker to access ad-
ditional systems. In theory, tools like
AIDE or Tripwire should catch these
modifications, but in practice this
doesn’t always work.

For more than a decade now, attackers
have been able to modify running pro-
cesses and programs in memory – for ex-
ample, patching the OpenSSH server to
log all incoming and outgoing data or
patching the OpenSSH client to log pass-
words. Attackers utilizing these methods
are very hard to detect because they
might leave little or no trace on the file-
system.

A server reboot or even a restarted ser-
vice can remove the attacker’s tools, but,
unless the underlying security flaw that
was used to break in is also patched, the
attacker will be able to regain access eas-
ily in most cases. So, how can you go
about examining a system for potential
attacker code running in memory or to

find out what an attacker has done if
you know a break-in has occurred?

Dumping System
Memory to a File
The first step is usually to make a snap-
shot of running memory so you can
more easily examine it. If you are run-
ning virtualized servers, tools like KVM
or VMware allow you to pause or sus-
pend virtual machines. When this is
done, a copy of memory is written to a
file, so the system can be restored prop-
erly later. If you are using virtual sys-
tems, or if you want to make a memory
image from within the system, your best
bet is to use the dd tool to dump the con-
tents of memory into a file using a com-
mand such as:

dd if=/dev/mem U

 of=/root/system‑memory.dump

This approach probably won’t work on
modern systems, however, because of a
new kernel capability called STRICT_
DEVMEM, which prevents user space access
to all of the memory. To get around this
restriction, you’ll need either to recom-
pile and install a new kernel with this
capability turned off (which will require
a reboot, removing any evidence in
memory) or use the fmem tool.

fmem
The fmem tool [1] is a small kernel mod-
ule that when loaded will cause a new
device called /dev/fmem to be added,
which allows full access to system mem-
ory. You should compile a copy of this
kernel module for your systems and
keep it handy because your production
system might not have development
tools or be very trustworthy if it’s been

Rescuing data from attackers

 Data Rescue
When attackers strike your system, you need to determine

exactly what damage has been done. Here are some tools to

help. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 Kurt SEiFriED

56

Features
Security Lessons: Rescue Tools

January 2012 Issue 134 lInux-magazIne.com | lInuxpromagazIne.com

056-057_kurt.indd 56 11/15/11 4:19:26 PM

won’t be all that useful. The contents of
memory will include processes, files,
and all sorts of structures and kernel
data, and sorting this out by hand would
be tedious to say the least.

Volatilitux
Volatilitux [2] supports ARM, x86, and
x86 with PAE (Physical Address Exten-
sion) and can be used to examine system
memory or a dump file. The benefit of
Volatilitux is that it can print out a list of
all running processes, a memory map of
a specific process, the dump of the pro-
cess, a list of all open files, and the con-
tents of any open files in memory. Using
this, you could, for example, do side-by-
side comparisons with known good cop-
ies of the same binary running BinDiff
on the same OS. The closer the binaries
are in terms of architecture, library, and
software versions, the more likely it is
that you’ll be able to find meaningful
differences between the two. Again,
preparation such as having a copy of
your production system for comparison
can save a lot of time when an incident
occurs.

Crash
Crash [3] is the kind of tool you’ve prob-
ably never heard about, but it’s the exact
thing you need to scratch many itches.
Crash can be used to examine a running
system or to dump files created by tools
like kdump or netdump. It actually ships as
a standard package in Red Hat Linux (it
was written by David Anderson of Red
Hat) and is available on Debian and
other distributions as well. Note that
most distributions (including Red Hat)
ship version 5.x, whereas the most cur-
rent version is 6.0.0. Compilation and in-
stallation of the latest version is simple:
Compile it with make and install it with
make install.

Other tools and Projects
Of course, other tools and projects are
available. The Linux Memory Analysis
[4] website lists many tools and also
links to a number of papers and some
challenges, where you can test your
skills or simply read about how analysis
is done in these cases.

Hiding in /dev/ shm
I’ve covered system memory and
swap space, but there are other

places an attacker can hide data on a
running system. One often ignored area
that is useful to an attacker is the shared
memory system.

The shared memory subsystem is de-
signed to allow efficient interprocess
memory sharing, and it’s also available
to attackers. Somewhat annoyingly, if
you dump the contents of /dev/mem (well,
/dev/fmem), you will not get the contents
of /dev/shm.

To actually get the contents of /dev/
shm, you’ll need to dump each “file”
within it:

for i in /dev/shm/*dodd if=$i U

 of=/root/dump/$idone

For an in-depth article on interacting
with /dev/shm and the memory struc-
tures used, refer to the IBM developer-
Works website [5].

Conclusion
For high-value targets, a savvy attacker
likely will try to avoid touch-
ing the filesystem if
possible. Luckily,
you can take steps
in advance to
make incident
response much
easier.

Depending
on your needs
and resources,
my minimal
recommenda-
tion is to make a
working fmem
kernel module
for all your sys-
tems and to
have disk
space
avail-
able

to hold the memory dumps. If you have
to dump a lot of systems, you could eas-
ily end up with a few terabytes worth of
files, especially if you also collect copies
of all the swap space.

Also, having known good copies of
what memory should look like will make
comparing potentially compromised sys-
tems easier. nnn

[1] fmem:
http:// hysteria. sk/ ~niekt0/ foriana/

[2] Volatilitux:
http:// code. google. com/ p/ volatilitux/

[3] Crash:
http:// people. redhat. com/ anderson/

[4] Linux Memory Analysis:
http:// www. forensicswiki. org/ wiki/
 Linux_Memory_Analysis

[5] Build a Python app for parsing
shared memory dumps:
http:// www. ibm. com/
 developerworks/ linux/ library/
 l‑parse‑memory‑dumps/

 inFO

Features
Security Lessons: Rescue Tools

57lInux-magazIne.com | lInuxpromagazIne.com Issue 134 January 2012

056-057_kurt.indd 57 11/15/11 4:19:27 PM

