
D
espite administrators’ best efforts, networks,
servers, and services are destined to fail at some
point. Sometimes the failure is obvious (a fan
goes out or a backhoe meets your network cable),

and sometimes the failure is subtle (a DNS change that breaks
email to a server).

Troubleshooting these problems can be easy if you know the root cause, but that’s not
typically the case, and the task is orders of magnitude more difficult when you have 1,000,
10,000, or 100,000 machines to manage.

In such cases, OpenNMS [1] can help. When you need to monitor very large networks,
especially geographically distributed and non-homogeneous (Windows, Linux, Solaris,
AIX, etc.) networks, you need some pretty serious monitoring software. The big commer-
cial products, such as IBM Tivoli or HP Systems Manager will do the trick, but they aren’t
open source or cheap. Thus, you might have issues if you need to customize them signifi-
cantly, and tracking down the appropriate support can be difficult.

What Is OpenNMS?
At first, I thought OpenNMS was a typical network monitoring tool like Nagios. I thought
you could just fire it up, tell it what to watch, and wait for your cell phone to ring when
something failed. OpenNMS will do that, and more. OpenNMS is designed to address the
monitoring of extremely large (e.g., 100,000 machines) networks with many different
types of devices. To this end, OpenNMS is a monitoring platform upon which you can
build pretty much whatever you want. Also, it ships with a fairly complete prebuilt moni-
toring solution, so you don’t have to do much from scratch unless you want to.

Installation
OpenNMS has several main components: a back-end database (PostgreSQL), a Java-based
engine that does all the heavy lifting (monitoring, alerting, etc.), and a Java-based web
front end for administering and managing the system, viewing reports, and so on. I won’t
cover all the details of installation because OpenNMS has an extremely comprehensive in-
stallation guide [2] that covers the process in depth.

Monitoring large systems and networks

Big Time
If you need to monitor very large networks, you need

powerful software. OpenNMS offers serious monitor-

ing capabilities in a truly open source package.

By Kurt Seifried

FEBRUARY 2011 ISSUE 123 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM 38

COVER STORIES
OpenNMS

038-041_openNMS.indd 38 14.12.2010 13:42:37 Uhr

The basic installation procedure is to install PostgreSQL and
Java and then OpenNMS, then configure the whole thing to
run at boot time, and that’s it.

Choose your Version
The first choice you’ll need to make is which version of Open-
NMS to run. You have four options here: stable, unstable, test-
ing, and snapshot. Stable is, of course, the latest stable release,
and unstable is the latest official development version of Open-
NMS.

The testing version is a nightly snapshot of what will be the
stable release, and the snapshot release is a nightly snapshot of
the development release (if you want bleeding edge, this is the
one to choose).

You also have several options for obtaining OpenNMS. You
can download the source and install it
from scratch; download an RPM, DPKG
(for Debian and Ubuntu), or Solaris
package; or install it on Mac OS X via
Fink. Or, you can grab the JAR file for a
Windows installation.

For an RPM-based system, the easiest
method is to get and install the stub
RPM that contains the repository infor-
mation. You can do this with the follow-
ing command:

http://yum.opennms.org/repofiles/ U

 opennms-repo-snapshot-fc12.noarch.rpm

The file name for the Fedora 11 stable version would be open-
nms-repo-stable-fc11.noarch.rpm and so on. Once this step is
done, you can simply run yum install opennms and go through
the configuration process.

A Brief Note on Performance
I spoke with the OpenNMS developers about perfor-

mance of the system. I asked how many monitoring
systems would be needed to monitor large numbers (e.g.,

tens of thousands) of hosts. The response was that a rela-
tively normal server (basically anything modern with

enough RAM to run the Java apps and host the database
without thrashing the disks) would be able to handle things.

So, for most installations, you can easily get away with one
or two servers (probably best to have two in case one fails or
needs to be taken offline for maintenance). Also, you can in-
stall remote agents; more on this later.

Configuration of OpenNMS
Once you’ve installed OpenNMS, you can log in to the web in-
terface on port 8980. You’ll need to change the admin pass-
word, then you can select Admin and click on Configure Dis-
covery, where you can enter individual services and URLs or
network blocks to scan and monitor.

Alternatively, you can edit the discovery-configuration.xml
file by hand or generate your own using a script if you know
your network and IP blocks. OpenNMS also supports exclusion
ranges, so you can avoid monitoring things that might not be-
long to you.

Once you have entered the information in the web interface,
just click Save and Restart Discovery. OpenNMS will then scan
all the hosts you have specified, looking for common services
(DNS, HTTP, file sharing, etc.) and adding them to the data-
base. OpenNMS also supports SNMP and will attempt to con-
nect to devices and poll them, which can provide a wealth of
information.

Note that, if a node is SNMP capable and read access is given
out publicly, OpenNMS will identify that system by the name
with which it is configured rather than the DNS hostname or
the IP address (assuming reverse DNS lookup fails).

Once you have a list of nodes discovered by OpenNMS, you
can start categorizing them: Are they used for production, de-
velopment, testing? Is it a router, a switch, a server? You can of
course add new categories (“payment processing servers” or
“database servers”), and a node can belong to more than one

category (e.g., “accounting” and
“production” or “staffing” and
“database”).

Alternatively, you can open a
category (Admin | Category |
Show) and select from a list of all
the available hosts. You’ll need to
fill out the asset information; by
default, this supports things like
serial number, asset number, oper-
ating system, location, rack ID, Figure 1: My test network isn’t all that healthy.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM ISSUE 123 FEBRUARY 2011 39

COVER STORIES
OpenNMS

038-041_openNMS.indd 39 14.12.2010 13:42:43 Uhr

vendor information,
authentication infor-
mation, and com-
ments. Thankfully,
once you’ve entered
this information, you
won’t need to do it
again. You can just
save and export the
data for later use.

Monitoring
By default, OpenNMS
runs on a five-minute
polling schedule to
determine availability
(i.e., it checks nodes,
services, etc. every
five minutes; see Fig-
ure 1). The reason for
this schedule is sim-
ple: A 99.99% uptime guarantee means you get 4.32 minutes
(on average) of outage time per month, so anything over five
minutes has blown that away. When an outage is detected,
OpenNMS starts polling the service every 30 seconds for a pe-
riod of five minutes; once this process is complete, the outage
is assumed to be significant and OpenNMS reverts to a five-
minute polling interval for 12 hours.

If after 12 hours the service hasn’t been fixed, OpenNMS re-
duces polling to every 10 minutes for five days. After this point,
OpenNMS marks the service as “forced unmanaged” and stops
polling it. If you have different service agreement levels (i.e.,
only 99% uptime, or 99.999% uptime), you can easily modify
the poller-configuration.xml file accordingly.

OpenNMS can monitor just about everything: SNMP, of
course, ICMP ping, and support for most common services
(SSH, DNS, HTTP, etc.). You can request web pages (and check
the page contents for specific items like price information or a
status message), write custom checks, use Nagios plugins di-
rectly, and access Windows Management Instrumentation
(WMI). You also get response times (Figures 2 and 3).

Notifications
Tracking outages is all well and good, but being notified of
them promptly is even better. OpenNMS uses the concept of
“Destination paths,” which is essentially a list of one or more
alerting methods that are used in turn until the notification
event is acknowledged (thus indicating that someone is work-
ing on it).
This approach allows you to contact multiple
people in a given sequence using a variety of
methods (including email, IRC, XMPP, phone,
and pager messages, as well as sending an arbi-
trary HTTP request or executing an external pro-
gram). Thus, you can start by sending an instant
message to your admin and escalate to pages and
phone calls at home.

The back end of notifications is pretty straight-
forward. When OpenNMS notices an event, it

generates an SNMP event that is handled inter-
nally; by default, many of these events have al-
ready been grouped into generic notification
events, like nodeDown (a node has gone down)
and nodeLostService (a node loses a service).
You can, of course, create your own events (e.g.,
monitoring for 3Com- or Cisco-related traps).

Remote Monitoring
If centralized monitoring won’t work (e.g., you
have branch offices sitting behind firewalls),
OpenNMS supports remote monitors. These soft-
ware agents can run on remote systems and
check the health of machines and networks then
report back to the central OpenNMS servers.
With the use of this approach, you can ensure
that services are remotely available and detect
more fine-grained failures – also known as the
“it works for me, it must be your end that’s bro-
ken” scenario.

Critical Paths and Failures
So, what happens when a router dies, disappearing an entire
network behind it? You get hit with 15,000 outage notifications,
flooding your alerting system (I hope you don’t get a page for
each one) and generally burying the important event. Open-
NMS has a solution for this, too.

By defining a critical path (an IP address and a service) that
will be affected by this failure, when the router providing ac-
cess to that subnet goes down, OpenNMS will not freak out.
Unfortunately, ICMP currently is the only critical path service
supported directly, service-level critical paths are not yet avail-
able (Figure 4).

A potential solution can be found in the form of support for
the Drools [3] “Business Logic Integration Platform,” which al-
lows you to express rules in XML form and take action on the
basis of them. Unfortunately, to configure this, you need to
know how to write Drools rules and understand how Drools
behaves (the documentation is lacking). Also, to use Drools
properly, you would need to figure out all the failure scenarios
for your equipment and express them as a rule set; if this were
possible, admins wouldn’t be spending so much time monitor-
ing and fixing things in the first place.

Monitoring Windows
Windows Management Instrumentation (WMI) [4] is a Micro-
soft technologies that you’ve probably never heard about but
that is invaluable if you have to administer Windows systems.
Basically, WMI allows you to write scripts or applications that

can automate tasks
on remote computers
(sort of like Cfengine
or Puppet in the Unix
world) and can be
used to supply man-
agement data (i.e.,
system and applica-
tion health). Using
WMI, you can peer

Figure 3: This report shows a critical path with a single

server failure.

Figure 2: Traffic to and from a printer (not much printing

going on).

FEBRUARY 2011 ISSUE 123 LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM 40

COVER STORIES
OpenNMS

038-041_openNMS.indd 40 14.12.2010 13:42:44 Uhr

pretty deeply into the state of a Windows ma-
chine (you can even query the BIOS) and, as-
suming your applications are written with
WMI support, you can also check on them.
This method allows you to ensure that the ap-
plication is running smoothly and hasn’t
stalled or slowed down for some reason. De-
tailed information on WMI configuration is
covered in the OpenNMS wiki [5].

Custom Monitoring Plugins
Between the default set of plugins and the ability to monitor
SNMP and WMI, OpenNMS can provide a fairly in-depth view
of your systems. However, if you have legacy applications or a
closed source application that doesn’t report its health via
SNMP or WMI, all is not lost. If you look at the existing plugins
in the netmgt/pollers/monitors/ directory, you’ll see that writ-
ing a custom plugin is relatively simple.

These plugins basically test a service in a variety of ways; re-
turn a serviceStatus code that indicates whether the service is
unavailable, unresponsive, or available; and then log the mes-
sage (e.g., “no route to host” or “TCP connection timed out”).
Most of the plugins consist of 200-300 lines of Java.

Alternatively, you can use the “General Purpose Poller,”
which allows you to call an external script or program to check
on a service. This technique allows you to write and use check
scripts written in any language supported by your OS and to
use command-line utilities that ship with your applications to
check on their health (search the wiki for “GeneralPurpose-
Poller”).

The Output
With all this back-end monitoring, how can you quickly and
concisely view the overall health of your system? Reports and
charts, of course. OpenNMS includes a number of default re-
ports (service availability overall, email servers, etc.) and al-
lows you to create new reports as well. Reports can also be
scheduled and emailed automatically or created on demand
(your manager will love this).

The OpenNMS package also includes some useful eye candy
– specifically, the mapping feature. You can generate maps in-
ternally or with the use of external services such as Google
maps. One of the best features is the ability to display maps
with Adobe SVG in full screen with an auto-update feature. If
you then put that map on a central monitor, you can easily
keep an eye on your entire network.

Support and Documentation
OpenNMS is a full-featured monitoring framework that can do
pretty much anything, which is also one of its major chal-
lenges. OpenNMS has a very active support community, how-
ever. The documentation wiki [5] is comprehensive, the mail-
ing list is helpful, and the IRC channel on FreeNode is popu-
lated and polite (and some of the OpenNMS authors spend
time there).

All of these features lead directly to the OpenNMS Group, the
commercial entity that is largely responsible for OpenNMS.
The OpenNMS Group makes money from customization, im-
plementation, and training. And, because they are writing the

software, they in effect provide a final
backstop for support and service.

What’s Wrong with
OpenNMS?
OpenNMS is not perfect, so you might
run into some issues. The IPv6 support,
for example, is currently ad hoc. Some
plug-ins, such as the HTTP service
check, do support IPv6 because the un-

derlying Java library supports IPv6; however, this isn’t the case
for all service plug-ins. More importantly, you can’t yet do
IPv6-based discovery, so you’ll have to add your hosts manu-
ally (or import the data; creating the import file isn’t too hard).
However, widespread IPv6 deployment is a ways off, so the
OpenNMS group has some time.

Also, because OpenNMS relies on PostgreSQL and is not yet
database portable, it can be a little annoying if you aren’t famil-
iar with it. The good news, though, is that virtually all OS ven-
dors either ship PostgreSQL or have an easily installable pack-
age for it. And, of course, tuning information can be found in
the documentation.

Conclusion
Would I buy OpenNMS? Or, because it is freely available,
would I be willing to spend the time to get this software in-
stalled and configured correctly? Yes. I previously used Nagios
[6] to monitor networks, but I ran into problems when moni-
toring large numbers of hosts because Nagios fired up the ping
command when it needed to send an ICMP packet to a host to
see whether it was up; this is a non-issue with OpenNMS.

I also like the ability of OpenNMS to escalate alerts and use
different contact methods. I like the ease of configuration, too.
For a simple setup, you can basically add your network block
to the discovery page, put your email address to the notifica-
tion chain, and you’re done. Also, OpenNMS has been under
active development for 10 years, so it can compete readily
against the major commercial offerings.

Because OpenNMS truly is open source (GPL licensed), you
won’t get stuck in an expensive bait and switch situation,
where the vendor gives out a slightly crippled open source ver-
sion, but you need to buy a commercial version to get the fea-
tures or scalability that you need. If you have a network to
monitor, especially one made up of Unix, Windows, and
SNMP-enabled network devices, OpenNMS is definitely worth
checking out. ■■■

[1] OpenNMS: http:// www. opennms. org/

[2] OpenNMS installation guide: http:// www. opennms. org/
 documentation/ installguide. html

[3] Drools: http:// www. jboss. org/ drools

[4] Windows Management Instrumentation: http:// msdn.
 microsoft. com/ en-us/ library/ aa394582%28VS. 85%29. aspx

[5] OpenNMS documentation wiki:
http:// www. opennms. org/ wiki/

[6] Rootdev: OpenNMS vs. Nagios: http:// www. rootdev. com/
 tech/ opennms-vs-nagios

 INFO

Figure 4: This shows a critical path

with a single server failure.

LINUX-MAGAZINE.COM | LINUXPROMAGAZINE.COM ISSUE 123 FEBRUARY 2011 41

COVER STORIES
OpenNMS

038-041_openNMS.indd 41 14.12.2010 13:42:45 Uhr

