
When it comes to publishing
your OpenOffice.org Writer
documents on the web, you

have several options. If you use Media-
Wiki as your web publishing platform,
you can use the Sun Wiki Publisher to
convert documents into wiki pages. Ope-
nOffice also lets you save pages in HTML
format for use with content management
systems that support HTML formatting
(the HTML output produced by OpenOf-
fice is far from perfect, though). But
what if you are using a publishing plat-

form that uses its own markup? In this
case, you might want to consider creat-
ing a DIY OpenOffice Basic solution.

To begin, start with a macro that for-
mats the Writer document with a spe-
cific markup. For this exercise, I’ll use
DokuWiki syntax, but you can adapt the
final macro to other markup systems.
For simplicity, I focus on the core for-
matting options: headings (from Head-
ing 1 to Heading 5), bold, italic, and un-
derlined, as well as hyperlinks. The way
the macro works is simple: It finds all

occurrences of formatted text and re-
places them with appropriate DokuWiki
markup: text in bold becomes **text in
bold**, text in italic becomes // text in
italic// , and so on. Because the macro
performs a number of similar find and
replace operations, it is a perfect candi-
date for functions. In this case, I need
three functions for converting headings,
URLs, and formatted text. The function
that does the latter is shown in Listing 1.

The function requires three parame-
ters: SearchAttrName, SearchAttrValue,
and ReplaceStr. The SearchAttrName and
SearchAttrValue variables find specific
formatting in the document. For exam-
ple, to find text fragments in bold, you
should assign the CharWeight value to
the SearchAttrName variable and the
com.sun.star.awt.FontWeight.BOLD
value to the SearchAttrValue variable.
The ReplaceStr variable specifies the ap-
propriate formatting tags wrapped
around the strings found. In DokuWiki,
the ** tag is used to mark bold text, so
in this case, the required value is **&**.
Note that the function also uses the
statement ReplaceObj.Search Regular
Expression=true to enable the regular
expressions in the search, and it uses the

Coding your own document formatting solution might sound like a daunting propo-

sition, but it requires only a couple of relatively simple macros. BY DMITRI POPOV

Using OpenOffice.org Basic macros to publish documents on the web

CONVERT AND PUBLISH

01 Function MarkupTextFunc (SearchAttrName, SearchAttrValue, ReplaceStr)

02 Dim SearchAttributes(0) As New com.sun.star.beans.PropertyValue

03 ThisDoc=ThisComponent

04 SearchAttributes(0).Name=SearchAttrName

05 SearchAttributes(0).Value=SearchAttrValue

06 ReplaceObj=ThisDoc.createReplaceDescriptor

07 ReplaceObj.SearchRegularExpression=true

08 ReplaceObj.searchStyles=false

09 ReplaceObj.searchAll=true

10 ReplaceObj.SetSearchAttributes(SearchAttributes)

11 ReplaceObj.SearchString=".*"

12 ReplaceObj.ReplaceString=ReplaceStr

13 ThisDoc.replaceAll(ReplaceObj)

14 End Function

Listing 1: Converting Formatted Text

Workspace: OOo Basic MacrosLinUxUser

82 ISSUE 115 June 2010

".*" regular expression to perform the
specified search in the document text.

To format headings, I need another
function. Headings in Writer documents
are usually formatted by paragraph
styles, so each heading can be treated as
a paragraph. This way, the function can
do its job in three steps. First, it identi-
fies paragraphs in the document as ob-
jects. Second, for each paragraph object,
the function locates the portion format-
ted with a heading paragraph style, and
third, wraps the text portion into the
specified tags (Listing 2). This function
also requires three parameters: Style-
Name, StartTag, and EndTag. StyleName
specifies the paragraph style. In this
case, the values that can be assigned to
the variable are Heading 1, Heading 2,
Heading 3, and so on. Finally, I need one
more function to format hyperlinks in
the document (Listing 3). As you can
see, this function is almost identical to
the one in Listing 2. The only difference
is that it looks for hyperlinks instead of
heading formatting. Also note that the
function doesn’t require any arguments.

With all functions in place, you can
work on the macro. This part is probably
the easiest. All you have to do is call the
functions and provide them with the ap-
propriate parameters. For example, the
statement that converts headings format-
ted with the Heading 1 style should be:

MarkupHeadingsFunc(U

 "Heading 1", "====== ", " ======")

and the statement to convert text frag-
ments in bold should be:

MarkupTextFunc("CharWeight", U

 com.sun.star.awt.FontWeight.BOLD, U

 "**&**")

So the entire macro that processes and
converts the current Writer document
looks like Listing 4.

improving the Macro
Although this simple macro does the job,
you can improve it in a number of ways.
For example, you might want to tweak it
so that it saves the converted document
as a plain text file. To do this, you need
to make several modifications to the
original macro. To begin, you have to de-
fine a new variable at the beginning of
the macro:

Dim Args(0) As New com.sun.star.beans.PropertyValue

Also, you need to add a code block to check that the document has been saved (i.e.,
it has a location on the hard disk). This can be done in just three lines of code:

If ThisDoc.hasLocation=False Then

 MsgBox ("You have to save the document first!", 64, "Attention") :End

End If

Using OpenOffice.org Basic macros to publish documents on the web

CONVERT AND PUBLISH

01 Function MarkupURLFunc()

02 ThisDoc=ThisComponent

03 ThisText=ThisDoc.Text

04 ParaEnum=ThisText.createEnumeration

05 While ParaEnum.hasmoreElements

06 Para=ParaEnum.nextElement

07 PortionEnum=Para.createEnumeration

08 While PortionEnum.hasMoreElements

09 Portion=PortionEnum.nextElement

10 If Portion.HyperlinkURL <> "" Then

11 Portion.String = "[[" + Portion.HyperlinkURL +"|" +Portion.String + "]]"

12 End Jf

13 Wend

14 Wend

15 End Function

Listing 3: Converting Hyperlinks

01 Function MarkupHeadingsFunc (StyleName, StartTag, EndTag)

02 ThisDoc=ThisComponent

03 ThisText=ThisDoc.Text

04 ParaEnum=ThisText.createEnumeration

05 While ParaEnum.hasmoreElements

06 Para=ParaEnum.nextElement

07 PortionEnum=Para.createEnumeration

08 While PortionEnum.hasMoreElements

09 Portion=PortionEnum.nextElement

10 If Portion.paraStyleName = StyleName Then

11 Portion.String = StartTag + Portion.String + EndTag

12 End If

13 Wend

14 Wend

15 End Function

Listing 2: Converting Headings

01 Sub Markup

02 ThisDoc=ThisComponent

03 MarkupHeadingsFunc("Heading 1", "====== ", " ======")

04 MarkupHeadingsFunc("Heading 2", "===== ", " =====")

05 MarkupHeadingsFunc("Heading 3", "==== ", " ====")

06 MarkupHeadingsFunc("Heading 4", "=== ", " ===")

07 MarkupHeadingsFunc("Heading 5", "== ", " ==")

08 MarkupTextFunc("CharWeight", com.sun.star.awt.FontWeight.BOLD, "**&**")

09 MarkupTextFunc("CharPosture", com.sun.star.awt.FontSlant.ITALIC, "//&//")

10 MarkupTextFunc("CharUnderline", com.sun.star.awt.FontUnderline.SINGLE, "__&__")

11 MarkupURLFunc

12 End Sub

Listing 4: Converting the Writer Document

LinUxUserWorkspace: OOo Basic Macros

83ISSUE 115June 2010

Next, the macro has to initiate the built-in Tools library with the following steps:

If (Not GlobalScope.BasicLibraries.isLibraryLoaded("Tools")) Then

 GlobalScope.BasicLibraries.LoadLibrary("Tools")

End If

The macro then uses the DirectoryNameOutOfPath routine from the Tools library to
obtain the directory where the current document is stored:

DocURL=ThisDoc.getURL()

DocDir=DirectoryNameOutOfPath(DocURL, "/")

Additionally, the macro has to pull the name of the document from the document’s
path:

FileName=Left(Dir(DocURL, 0), Len(Dir(DocURL, 0))‑4)

Finally, the macro uses the obtained in-
formation to save the document as a
plaintext file at the same location:

Args(0).Name="FilterName"

Args(0).Value="Text"

TextFilePath=ConvertToURL(U

 DocDir & "/" & FileName & ".txt")

ThisDoc.StoreToURL(U

 TextFilePath, Args())

That’s it. Listing 5 is the entire macro.

Adding FTP Upload
The great thing about DokuWiki is that
it stores all pages as plaintext .txt files.
This means that you can upload con-
verted documents without any addi-
tional tweaking. Of course, you can do it
manually with an FTP client, or you can
write another macro that would do this
for you. In this way, you can convert,
save, and upload any Writer document
in one fell swoop. The best part is that
writing a macro that does the upload is
rather easy because you can reuse most
of the code from the conversion macro,
as you can see in the FTPUpload macro
in Listing 6.

The only difference here is the
FTPPath="ftp://username:password@
ftp.server.com/" statement that specifies
the FTP connection string. Obviously,
you have to replace the placeholders
with an actual username, password, and
FTP address for this macro to work prop-
erly. If you prefer not to hard-wire the
connection string into the macro, you

01 �Sub Markup

02 �Dim Args(0) As New com.sun.star.beans.PropertyValue

03 �ThisDoc=ThisComponent

04 �

05 � If ThisDoc.hasLocation=False Then

06 � MsgBox (�"You have to save the document first!", 64,

"Attention") :End

07 �End If

08 �

09 �MarkupHeadingsFunc("Heading 1", "====== ", " ======")

10 �MarkupHeadingsFunc("Heading 2", "===== ", " =====")

11 �MarkupHeadingsFunc("Heading 3", "==== ", " ====")

12 �MarkupHeadingsFunc("Heading 4", "=== ", " ===")

13 �MarkupHeadingsFunc("Heading 5", "== ", " ==")

14 �MarkupTextFunc(�"CharWeight", com.sun.star.awt.FontWeight.

BOLD, "**&**")

15 �MarkupTextFunc(�"CharPosture", com.sun.star.awt.FontSlant.

ITALIC, "//&//")

16 �MarkupTextFunc(�"CharUnderline", com.sun.star.awt.

FontUnderline.SINGLE, "__&__")

17 �MarkupURLFunc

18 �

19 �If (No�t GlobalScope.BasicLibraries.isLibraryLoaded(​

"Tools")) Then

20 � GlobalScope.BasicLibraries.LoadLibrary("Tools")

21 �End If

22 �

23 �DocURL=ThisDoc.getURL()

24 �DocDir=DirectoryNameOutOfPath(DocURL, "/")

25 �FileName=Left(Dir(DocURL, 0), Len(Dir(DocURL, 0))‑4)

26 �Args(0).Name="FilterName"

27 �Args(0).Value="Text"

28 �TextFilePath=ConvertToURL(DocDir & "/" & FileName & ".txt")

29 �ThisDoc.StoreToURL(TextFilePath, Args())

30 �End Sub

Listing 5: The Markup Macro

Figure 1: To open the macro editor, click on Tools | Macros | Organize Macros | OpenOffice.org

Basic, then choose the sample macro (Module1 in this case), and click Edit.

Workspace: OOo Basic MacrosLinuxUser

84 ISSUE 115 June 2010

can replace it with an input box that prompts the user to
enter the connection string:

FTPPath=InputBox("FTP Address", "Input required", U

 "ftp://user:password@192.168.1.7/pub/")

Listing 7 shows how to save the connection string in a text
file and tweak the macro to read the string (replace path/to/
connectftp.txt with the filepath): Then, modify the Markup
macro to ask the user whether to upload the converted file:

Answer=MsgBox("Upload file?",36, "Upload")

If Answer=6 Then

FTPUpload

End If

Pressing the Yes button triggers the FTPUpload macro.

Final Word
With some tweaking, this macro can work with any markup,
for example. The described macros provide basic functional-
ity, so you might want to add support for lists and tables. n

01 �Sub FTPUpload

02 �Dim Args(0) As New com.sun.star.beans.PropertyValue

03 �

04 �ThisDoc=ThisComponent

05 �If (Not GlobalScope.BasicLibraries.

isLibraryLoaded("Tools")) Then

06 �GlobalScope.BasicLibraries.LoadLibrary("Tools")

07 �End If

08 �

09 �DocURL=ThisDoc.getURL()

10 �DocDir=DirectoryNameOutOfPath(DocURL, "/")

11 �FileName=Left(Dir(DocURL, 0), Len(Dir(DocURL, 0))‑4)

12 �

13 �FTPPath="ftp://username:password@ftp.server.com/"

14 �SaveFTP = FTPPath & FileName & ".txt"

15 �Args(0).Name="FilterName"

16 �Args(0).Value="Text"

17 �ThisDoc.storeToURL(SaveFTP, Args())

18 �End Sub

Listing 6: The FTPUpload Macro

01 �FTPPath=ConvertToURL ("path/to/connectftp.txt")

02 �f1=FreeFile()

03 �Open FTPPath For Input As #f1

04 �Do While not Eof(f1)

05 �Line Input #f1, FTPString

06 �SaveFTP = FTPString & FileName & ".txt"

07 �Args(0).Name="FilterName"

08 �Args(0).Value="Text"

09 �ThisDoc.storeToURL(SaveFTP, Args())

10 �Loop

Listing 7: Reading a Connection
String from a File

OUT NOW !

Also includes free Ubuntu
“Karmic Koala” DVD!

Find out more on
www.ubuntu-user.com

UBUNTU USER MAGAZINE
is the first print magazine created specifically
for Ubuntu users.

Ease into Ubuntu with the helpful Discovery
Guide !

Advance your skills with
in-depth technical
articles, HOW-TOs,
reviews, tutorials,
and much more!

