
Then he said something that I had

heard a long time ago: “Of course, for

mission-critical applications, real mis-

sion-critical applications, the type of ap-

plications that absolutely have to work,

we would never use software-controlled

computers. Hydraulics are the way to go.

Software is just too unreliable.”

My face turned red – after all, my life

revolves around software and digital

computers. Systems I have helped create

have launched astronauts to the moon,

run automated warehouses, and per-

formed other “mission critical” work.

But as I sat there and listened to his sto-

ries of Chevron losing US$ 60,000,000 a

day because some software person ne-

glected to test their code, I thought back

to some of the projects in which testing

seemed to be an “after the fact” issue.

Getting Testy
I remember I once received a copy of

field test software and tried to install

it on my computer, but it would not

 install. Thinking that it was because

of my particular hardware configuration,

I looked at the source code for the in-

stallation program, which fortunately

was written in a scripting language, and

I saw that it was impossible to get

through the code via any path. In other

words, the engineer who had written it

had not tried executing the code even

one time.

Immediately, I walked into the engi-

neer’s office and admonished him be-

cause he had jeopardized the entire field

test of the product and, thus, the entire

projected shipping date. People’s busi-

nesses and livelihoods depended on us

making those dates, and although we

did not want to ship a defective product,

it was important to meet those dates.

On another occasion, we had deter-

mined – through no fault of Digital’s –

that 12,000 memory boards had a defec-

tive chip, which meant that all 12,000

would have to be recovered and remanu-

factured. Back then, memory was close

to US$ 1,000 a megabyte, so not only

were we looking at a potential US$

12,000,000 loss to the company, but a

lag time in shipping a new system.

One potential solution was to do a

software “strobe” of memory every few

milliseconds; however, the software

could not tell whether the board in any

particular system had this defect or was

a normally acting memory board. So

these particular modeled systems would

have to “strobe” memory as long as they

were in use.

A hardware engineer proposed that Ul-

trix (our Unix system at the time) simply

put this “strobe” software into the ker-

nel, thereby “solving the problem.” I

pointed out that the problem was with

hardware, and there was no guarantee

that this hardware would continue to

run Ultrix. Someday it might run VAX/

Eln, a real-time operating system used

for various mission-critical operations.

I said that perhaps when the control

rods for the nuclear reactor need to be

lowered, VAX/ Eln will pause for a few

milliseconds to strobe memory, but

when it goes back to lowering the rods,

the nuclear reactor will be a pile of ash.

The hardware group remanufactured

the memory boards.

Quality software engineering is serious

work. We need more of it. n

Recently I returned from the fan-

tastic LinuxFest Northwest 2009

conference in Bellingham, Wash-

ington, a small city north of Seattle and

home to a variety of people, from self-

described “ancient hippies” to software

people who have fled Redmond for a

quieter life. On my return flight, which

left from the Bellingham airport, I sat

next to a gentleman of “about my age.”

When I greeted him, he responded with

a hint of a Scottish accent.

Our small talk turned to our occupa-

tions: I told him about my job “selling

Free Software,” and he told me about his

job as a systems engineer for Chevron.

As the conversation continued, he dis-

cussed all of his efforts to use Microsoft

products and the number of times they

jammed up on him. His voice grew

warm as he talked about how Unix sys-

tems and Linux systems were much

more stable and how he liked them a lot

better.

Maddog autographed magazines at the Linux Pro booth at LinuxFest Northwest 2009.

When it comes to software engineering, we need more of it.

BY JON ‘MADDOG’ HALL

Quality software engineering

Wanted

CommuniTyDoghouse: Quality Software Engineering

93ISSUE 104JULY 2009

