
If your users are clamoring for the 

power of a data center but your pe-

nurious employer tells you to make 

do with the hardware you already own, 

don’t give up hope. With some some 

time, a little effort, and a few open 

source tools, you can transform your 

mild-mannered desktop systems into a 

number-crunching super computer. For 

the impatient, the PelicanHPC Live CD 

will cobble off-the-shelf hardware into a 

high-performance cluster in no time.

The PelicanHPC project is the natural 

evolution of ParallelKnoppix, which was 

a remastered Knoppix with packages for 

clustering. Michael Creel developed Peli-

canHPC for his own research work. Creel 

was interested in learning about cluster-

ing, and because adding packages was 

so easy, he added PVM, cluster tools like 

ganglia monitor, applications like GRO-

MACS, and so forth. He also included 

some simple examples of parallel com-

puting in Fortran, C, Python, and Octave 

to provide some basic working examples 

for beginners.

However, the process of maintaining 

the distribution was pretty time con-

suming, especially when it came to up-

dating packages such as X and KDE. 

That’s when Creel discovered Debian 

Live, spent time wrapping his head 

around the live-helper package, and cre-

ated a more systematic way to make a 

Live distro for clustering. So in essence, 

PelicanHPC is a single script that fetches 

required packages off a Debian reposi-

tory, adds some configuration scripts 

and example software, and outputs a 

bootable ISO.

Boot PelicanHPC
Later in the article, I’ll use the script to 

create a custom version. For now, I’ll use 

the stock PelicanHPC release (v1.8) from 

the website [1] to put those multiple 

cores to work. Both 32-bit and 64-bit 

versions are available, so grab the one 

that matches your hardware.

The developer claims that with Peli-

canHPC you can get a cluster up and 

running in five minutes. However, this is 

a complete exaggeration – you can do it 

in under three.

First, make sure you get all the ingre-

dients right: You need a computer to act 

as a front-end node, and others that’ll 

act as slave computing nodes. The front-

end and the slave nodes connect via the 

network, so they need to be part of a 

local LAN. Although you can connect 

them via wireless, depending on the 

amount of data being exchanged, you 

could run into network bottlenecks. 

Also, make sure the router between the 

front end and the slaves isn’t running a 

DHCP server because the front end doles 

out IP addresses to the slaves.

Although you don’t really need a mon-

itor or keyboard or mouse on the slave 

nodes, you need these on the front end. 

If you have a dual core with enough 

memory, it wouldn’t be a bad idea to run 

Crunch big numbers with your very own high-performance computing 

cluster. BY MAYANK SHARMA

A
n

d
rea

 D
a
n
ti, Foto

lia

Turn your desktop computer into a high-performance cluster with PelicanHPC

CLUTTER TO CLUSTER

PelicanHPCCoveR sToRy

30 ISSUE 103 JUNE 2009



the front end on a virtual machine and 

the slave on physical machines. Primar-

ily, PelicanHPC runs on memory, so 

make sure you have plenty. If you’re 

doing serious work on the cluster, you 

can make it save your work on the hard 

disk, in which case, make sure you have 

a hard disk attached. In fact, to test Peli-

canHPC, you can run it completely on 

virtual hardware with virtual network 

connections, provided you have the juice 

on the physical host to power so much 

virtual hardware.

With the hardware in place, pop in the 

Live CD in the front-end node and let it 

boot. If you want to choose a custom 

language or turn off ACPI or tweak some 

other boot parameters, you can explore 

the boot options from the F1 key; press 

Enter to boot with the default options.

During bootup, PelicanHPC prompts 

you thrice. First it wants you to select a 

permanent storage device that’ll house 

the /home directory. The default option 

ram1 stores the data on the physical 

RAM. If you want something more per-

manent, you just need to enter the de-

vice, such as hda1 or sda5. The device 

can be a hard disk partition or a USB 

disk – just make sure it’s formatted as 

ext2 or ext3. If you replace the default 

option ram1 with a device, PelicanHPC 

will create a user directory at the root of 

that device.

Next, PelicanHPC asks whether it 

should copy all the configuration scripts 

and the examples to the home directory 

on the specified device. If this is the first 

time you are running PelicanHPC, you’ll 

want to choose Yes. If you’ve selected a 

permanent storage location, such as a 

partition of the disk, on subsequent 

boots, you should choose No here. Of 

course if you are running PelicanHPC 

from RAM, you’ll always have to choose 

Yes.

Finally, you’re prompted to change the 

default password. This password will be 

for the user user on the front-end nodes, 

as well as on the slave nodes. Peli-

canHPC is designed for a single user, 

and the password is in cleartext.

When it has this info, PelicanHPC will 

boot the front-end node and drop off 

into the Xfce desktop environment.

set Up the Cluster
Now that the front-end node is up and 

running, it’s time to set it up for cluster-

ing. PelicanHPC has a set of scripts for 

this purpose. Either call the scripts man-

ually or use the master pelican_setup 

script, which calls all the other scripts 

that start the various servers and con-

nects with the slave nodes.

To start setting up the cluster, open a 

terminal window and type:

sh pelican_hpc

If you have multiple network interfaces 

on the machine, you’ll be asked to select 

the one that is connected to the cluster. 

Next, you’re prompted to allow the 

scripts to start the DHCP server, fol-

lowed by confirmation to start the ser-

vices that’ll allow the slave nodes to 

join the cluster. At first, the constant 

confirmations seem irritating, but they 

are necessary to pre-

vent you from 

throwing the net-

work into a tizzy 

with conflicting 

DHCP services or 

from accidentally in-

terrupting on-going 

computations.

Once it has your 

permission to start 

the cluster, the script 

asks you turn on the 

slave nodes.

Slave nodes are 

booted over the net-

work, so make sure 

the Network boot option is prioritized 

over other forms of booting in the BIOS. 

When it sees the front-end node, the 

slave displays the PelicanHPC splash 

screen and lets you enter any boot pa-

rameters (language, etc.), just as it did 

on the front-end node earlier. 

Instead of booting into Xfce, when it’s 

done booting, the slave node displays a 

notice that it’s part of a cluster and 

shouldn’t be turned off (Figure 1). Of 

course, if your slave nodes don’t have a 

monitor, just make sure the boot param-

eters in the BIOS are in the correct order 

and turn it on.

When the node is up and running, 

head back to the front end and press the 

No button, which rescans the cluster and 

updates the number of connected nodes 

(Figure 2). When the number of con-

nected nodes matches the number of 

slaves you turned on, press Yes. Peli-

canHPC displays a confirmation message 

and points you to the script that’s used 

to reconfigure the cluster when you de-

cide to add or remove a node (Figure 3). 

To resize the cluster, run the following 

script:

sh pelican_restarthpc

That’s it. Your cluster is up and running, 

waiting for your instructions.

Crunchy Bar
The developer, Creel, is a professor of 

economics at the Autonomous Univer-

sity of Barcelona in Catalonia, Spain. He 

works in econometrics, which involves a 

lot of number crunching. Therefore, 

you’ll find some text and example GNU 

Octave code related to Creel’s research 

Figure 1: If your slave node isn’t headless, this is what it’ll say.

Figure 2: Two nodes up and running; continue scanning for more.

CoveR sToRyPelicanHPC

31ISSUE 103JUNE 2009



and teaching. If you’re interested in 

econometrics, the econometrics.pdf file 

under the /home/user/Econometrics di-

rectory is a good starting point. Also 

check out the ParallelEconometrics.pdf 

file under /home/user/Econometrics/Par-

allelEconometrics. This presentation is a 

nice introduction to parallel computing 

and econometrics.

For the uninitiated, GNU Octave [2] is 

“a high-level computational language for 

numerical computations.” It is the free 

software alternative to the proprietary 

MATLAB program, both of which are 

used for hardcore arithmetic.

Some sample code is in the /home/

user/Econometrics/Examples/ directory 

for performing tests such as kernel den-

sity [3] and maximum likelihood estima-

tions, as well as for running the Monte 

Carlo simulations of how a new econo-

metric estimator performs.

Run Tests
To run the tests, open a 

terminal and start GNU 

Octave by typing octave 

on the command line, 

which brings you to the 

Octave interface.

Here you can run vari-

ous examples of sample 

code by typing in a 

name. For example, the 

kernel estimations are 

performed by typing ker-

nel_example. 

Similarly, pea_exam-

ple shows the parallel 

implementation of the 

parameterized expecta-

tion algorithm, and mc_

example2, shown in 

Figure 4, shows the 

result of the Monte 

Carlo test.

Creel also suggests 

that PelicanHPC can 

be used for molecu-

lar dynamics with 

the open source soft-

ware, GROMACS 

(GROningen MA-

chine for Chemical 

Simulations). The 

distributed project 

for studying protein 

folding, Folding@

home, also uses 

GROMACS, and Creel believes that one 

could also replicate this setup on a clus-

ter created by PelicanHPC.

Creel also suggests that users solely in-

terested in learning about high-perfor-

mance computing should look to Paral-

lelKnoppix, the last version of which is 

still available for download [4].

Parallel Programming with 
PelicanHPC
One of the best uses for PelicanHPC is 

for compiling and running parallel pro-

grams. If this is all you want to use Peli-

canHPC for, you don’t really need the 

slave nodes because the tools can com-

pile your programs on the front-end 

node itself.

PelicanHPC includes several tools for 

writing and processing parallel code. 

OpenMPI compiles programs in C, C++, 

and Fortran. SciPy and NumPy [5] are Py-

thon-based apps for scientific computing. 

PelicanHPC also has the MPI toolbox 

(MPITB) for Octave, which lets you call 

MPI library routines from within Octave.

Passing the Buck
If you’re new to parallel programming, 

you might not be aware of MPI (Mes-

sage-Passing Interface), which is key to 

parallel computing. It is a software sys-

tem that allows you to write message-

passing parallel programs that run on a 

cluster. MPI isn’t a programming lan-

guage, but a library that can pass mes-

sages between multiple processes. The 

process can be either on a local machine 

or running across the various nodes on 

the cluster.

Popular languages for writing MPI 

programs are C, C++ and Fortran. 

MPICH was the first implementation of 

the MPI 1.x specification. LAM/ MPI is 

another implementation that also covers 

significant bits of the MPI 2.x spec. 

LAM/ MPI can pass messages via TCP/ IP, 

shared memory, or Infiniband. The most 

popular implementation of MPI is Open-

MPI, which is developed and main-

tained by a consortium and combines 

the best of various projects, such as 

LAM/ MPI. Many of the Top 500 super-

computers use it, including IBM Road-

runner, which is currently the fastest.

MPI
PelicanHPC includes two MPI implemen-

tations: LAM/ MPI and OpenMPI. When 

writing parallel programs in C or C++, 

make sure you include the mpi.h header 

file (#include <mpi.h>). To compile the 

programs, you need mpicc for C pro-

grams, mpic++ or mpiCC for C++ 

programs, and mpif77 for Fortran.

Listing 1 has a sample “Hello World” 

program in C that uses the MPI library to 

print a message from all the nodes in the 

cluster. Compile it with mpicc:

mpicc borg-greeting.c U

-o borg-greeting

To run the programs you need to use 

mpirun:

mpirun -np 4 U

borg-greeting

This command tells the MPI library to 

explicitly run four copies of the hello 

Figure 3: Two nodes are up and running besides the front end.

01  #include <stdio.h>

02  #include "mpi.h"

03  

04  int main(int argc, char *argv[ ])

05  {

06      int rank, size;

07  

08      MPI_Init(&argc, &argv);

09  

10      MPI_Comm_rank(MPI_COMM_WORLD, &rank);

11      MPI_Comm_size(MPI_COMM_WORLD, &size);

12  

13      printf("We are borg! I am %d of %d\n", rank, 

size);

14  

15      MPI_Finalize();

16      return 0;

17  }

Listing 1: “Hello, World” in C with MPI

PelicanHPCCoveR sToRy

32 ISSUE 103 JUNE 2009



Anzeige 
wird 
separat 
angeliefert



app, scheduling them on the CPUs in the 

cluster in a round-robin fashion. De-

pending on the number of nodes in your 

cluster, you’ll see something like:

We are borg! I am 1 of 4

We are borg! I am 3 of 4

We are borg! I am 0 of 4

We are borg! I am 2 of 4

Several MPI tutorials reside on the 

web [6]. Professor José Luis at the Uni-

versity of Seville in Spain uses Peli-

canHPC to teach his parallel program-

ming course. He recommends that new 

programmers try the examples available 

online from Peter 

Pacheco’s book, Par-

allel Programming 

with MPI [7].

See the OpenMPI 

website for addi-

tional documen-

tation, including 

a very detailed 

FAQ [8].

Build your 
own 
PelicanHPC
If you’re just inter-

ested in learning 

parallel program-

ming, PelicanHPC 

provides more than 

enough. But the 

main goal of the Live CD is to help you 

get a cluster up and running without 

much effort. The focus is on maintain-

ability and ease of customization, which 

is why the releases do not include a lot 

of packages. 

Once you test the Live CD and think 

it’ll work for you, you are encouraged to 

make your own versions via the Debian 

live-helper package and Pelican’s make_

pelican script. Also, you’ll need a Debian 

or Ubuntu installation to produce the 

Live CD, which can be a minimal instal-

lation or even a virtual machine on a 

host with lots of RAM and a fast dual-

core processor, which is what I use.

So to roll out your own ISO or USB 

image, first install a recent Ubuntu or 

Debian release. I’ve used Lenny to create 

a customized PelicanHPC release. Next, 

grab the live_helper package from the 

distro’s repository. Finally, grab the lat-

est version of the make_pelican script 

(currently v1.8) from Pelican’s download 

page [4].

Open the script in your favorite text 

editor. The script is divided into various 

sections. After the initial comments, 

which include a brief changelog, the first 

section lists the packages that will be 

available on the ISO. Here is where you 

make the changes. 

Listing 2 shows a modified version 

of this section, in which I’ve commented 

out the binary blobs for networking, 

 because I don’t need this for my net-

works. I’ve also added AbiWord and 

the GROMACS package. Because these 

packages are fetched off your distri-

bution’s repositories, make sure you 

spell them as they appear there. 

 GROMACS has several dependencies but 

you don’t have to worry about adding 

them because they’ll be fetched auto-

matically.

The next bit in the make_pelican script 

you have to tinker with is the architec-

ture you want to build the ISO for and 

whether you want the ISO or USB image. 

This section also specifies the series of 

network addresses doled out by Peli-

canHPC:

PELICAN_NETWORK=U

"10.11.12"

MAXNODES="100"

#ARCHITECTURE=U

"amd64"

#KERNEL="amd64"

ARCHITECTURE=U

"i386"

KERNEL="686"

IMAGETYPE="iso"

#IMAGETYPE="usb-hdd"

DISTRIBUTION=U

Mayank Sharma has written for vari-

ous Linux publications, including 

Linux.com, IBMdeveloperWorks, and 

Linux Format, and has published two 

books through Packt on administer-

ing Elgg and Openfire. Occasionally 

he teaches FLOSS technologies. You 

can reach him via: 

 http://www.  geekybodhi.  net.

T
H

E
 A

U
T

H
O

R

01  ### packages to add - place names of 

packages you want here ###

02  cat <<PACKAGELIST > addlist

03  # basic stuff needed for cluster 

setup

04  ssh dhcp3-server nfs-kernel-server 

nfs-common atftpd ifenslave

05  # binary blobs for networking

06  # firmware-bnx2 firmware-iwlwifi 

firmware-ralink 

linux-wlan-ng-firmware

07  # resource management

08  slurm-llnl slurm-llnl-sview 

slurm-llnl-basic-plugins

09  # configuration and tools

10  wget bzip2 dialog less net-tools 

rsync fping screen

11  make htop fail2ban locales 

console-common

12  # mail support

13  bsd-mailx liblockfile1 mailx postfix 

ssl-cert

14  # MPI

15  lam-runtime lam4-dev openmpi-bin 

openmpi-dev

16  # Octave

17  octave3.0 octave3.0-headers gnuplot

18  # Python

19  python-scipy python-matplotlib 

python-numpy ipython lampython

20  # other scientific

21  gfortran libatlas-headers 

libatlas3gf-base

22  # GROMACS

23  gromacs

24  # X stuff

25  xorg xfce4 konqueror ksysguard 

ksysguardd kate kpdf

26  konsole kcontrol kdenetwork kdeadmin 

abiword

27  PACKAGELIST

28  ### END OF PACKAGELIST ###

Listing 2: Packages For Your PelicanHPC Live CD

Figure 4: Gnuplot plots the results of a Monte Carlo test example.

PelicanHPCCoveR sToRy

34 ISSUE 103 JUNE 2009



oper has put a lot of effort behind Peli-

canHPC’s no-fuss approach to get your 

cluster off the ground in a jiffy. The cus-

tomization abilities are the icing on the 

cake and make PelicanHPC an ideal plat-

form for building your own custom clus-

ter environment.  n

[1]  PelicanHPC: http://  pareto.  uab.  es/ 

 mcreel/  PelicanHPC/

[2]  GNU Octave:  

http://  www.  gnu.  org/  software/  octave/

[3]  Kernel density estimation:  

http://  en.  wikipedia.  org/  wiki/  Kernel_

density_estimation

[4]  ParallelKnoppix download:  

http://  pareto.  uab.  es/  mcreel/ 

 PelicanHPC/  download/

[5]  SciPy and NumPy:  

http://  www.  scipy.  org/

[6]  MPI tutorial: http://  www.  dartmouth. 

 edu/  ~rc/  classes/  intro_mpi/

[7]  Parallel Programming with MPI: 

http://  www.  cs.  usfca.  edu/  mpi/

[8]  OpenMPI FAQ:  

http://  www.  open-mpi.  org/  faq/  ? 

 category=mpi-apps

INFO

"lenny"

MIRROR="en"

The rest of the script deals with Peli-

canHPC internals and shouldn’t be 

tweaked unless you know what you’re 

doing. However, it’s advisable to browse 

through the other sections to get a better 

idea about how PelicanHPC magically 

transforms ordinary machines into ex-

traordinary computing clusters.

When you’ve tweaked the script, exe-

cute it from the console:

sh make_pelican

Now sit back and enjoy, 

or if you have a slow 

connection and are run-

ning this on a slow 

computer, you better do 

your taxes because it’ll 

take a while to fetch all 

the packages and com-

pile them into a distro 

image.

When it’s done, you’ll 

have a shiny new ISO 

named binary.iso under either the i386/ 

or the amd64/ directory, depending on 

the architecture you build for. Now 

transfer the USB image onto a USB stick, 

or test the ISO image with VirtualBox or 

with Qemu before burning it onto a disc. 

Figure 5 shows the password screen of a 

modified PelicanHPC Live CD.

PelicanHPC is designed with ease of 

use in mind for anyone who wants to 

use their spare computers to do some se-

rious number crunching. Building on the 

experience of ParallelKnoppix, the devel-

Figure 5: Tweak the make_pelican script to create your custom 

prompts.

the mathematics of humour
TWELVE Quirky Humans,

TWO Lovecraftian Horrors,

ONE Acerbic A.I.,

ONE Fluffy Ball of Innocence and

TEN Years of Archives

 EQUALS

ONE Daily Cartoon that Covers the

 Geek Gestalt from zero to infinity!

Over Two Million Geeks around the world can’t be wrong!

COME JOIN THE INSANITY!

CoveR sToRyPelicanHPC

35ISSUE 103JUNE 2009


