
yperic HQ is an open source en-

terprise monitoring suite that in-

cludes all the essential features

of an enterprise monitoring tool. What

sets Hyperic apart from other open

source suites is its ease of configuration

and its focus on application layer perfor-

mance metrics. Monitoring custom ap-

plication servers, databases, and web

servers is often a tedious task that re-

quires a lot of custom retrofitting. Hy-

peric breaks the mold by letting you col-

lect application-specific performance

metrics automatically using a system of

logical defaults.

The days of only monitoring system-

level services and network connectivity

are over. Hyperic belongs to a new breed

of monitoring tools that can peer into

complex application stacks. Hyperic HQ

excels at monitoring applications and

providing performance statistics for the

most common application servers, data-

base servers, web servers, network de-

vices, and applications. Hyperic is an ex-

cellent choice for monitoring a Java ap-

plication server, such as a JBoss server

system.

Hyperic HQ monitors hosts with the use

of an agent-based model; a Java-based

agent is installed on target hosts that

collect data and feed the information to

a management server. Hyperic provides

easy-to-configure installers for Linux,

Windows, Mac OS X (PPC), and Solaris.

Java 1.4+ is required for the manage-

ment server and agents. Because Hy-

peric is a Java-based monitoring appli-

cation, it can run on any platform that

supports Java.

Hyperic provides the option of install-

ing with a bundled Java Runtime Engine

(JRE) to avoid having to download and

instal a JRE or Java Development Kit

(JDK), although you also have the option

of using almost any JRE or JDK.

To start the easy installation, first

download the HQ Installer [1], which

provides the server, agent, and JRE re-

quired for a full Hyperic monitoring so-

lution. Then select the installation pack-

age that most closely resembles the tar-

get system’s operating system. If the sys-

tem on which you are installing Hyperic

is not listed on this page, choose Plat-

form independent – no JRE and make

sure a supported JRE/ JDK is present on

the target system.

Next, open a terminal as root and cre-

ate a hyperic user and directory to de-

ploy the server installation. Make sure

Monitor a Java application server with Hyperic HQ. BY MATTHEW SACKS

Javier Soltero, Doug MacEachern, Ryan

Morgan, Charles Lee, and John Sachs

founded Hyperic in 2004 when they

moved from Covalent. Covalent, which

is a major contributor to the Apache

httpd project, formed the Covalent Ap-

plication Manager around Hyperic HQ.

MacEachern is one of the original devel-

opers for the mod_perl project and a

contributor to the Apache httpd project.

Developers

Hyperic HQ

36 ISSUE 102 MAY 2009

that the hyperic user’s home directory is

owned by hyperic:

mkdir /usr/local/hyperic

useradd hyperic -d

/usr/local/hyperic

chown hyperic:hyperic

/usr/local/hyperic

Now unzip the Hyperic installation tar-

ball in /usr/local/hyperic:

$ tar -xvzf hyperic-

hq-installer-4.0.2-939

-x86-linux.tgz

Note that if you use the Hyperic tarball

for the installation, you might need to

add the init or rc scripts manually to

start the Hyperic server or agents auto-

matically at boot time.

The unzipping process creates a direc-

tory called hyperic-hq-installer in which

the installation sources reside. Now you

can cd to this directory and execute the

setup shell script:

cd hyperic-hq-installer

./setup.sh

When the prompt asks you which por-

tion of the Hyperic suite to install,

choose the first option to install the

server only. Later, the agent will be in-

stalled on a separate host. After you

press Enter, the Hyperic installer will au-

tomatically configure the database, net-

working, and other configuration param-

eters required for the Hyperic server

(Listing 1).

Next, a prompt will ask you to run a tun-

ing script, which sets up the proper

shared memory settings to run the built-

in Hyperic database. (Because the tuning

script is not necessary for all operating

systems, however, the prompt will only

appear on systems that require the

script.) To make sure the installer is not

terminated, open another terminal win-

dow, run the tuning script as root in the

new terminal window, return to the orig-

inal installer terminal window, and press

Enter to resume the installer once the

script has executed.

Next, log in to another terminal as

root and execute the script tune-os.sh:

/usr/local/hyperic/

hyperic-hq-installer/

installer-4.0.1/data/

hqdb/tune-os.sh

After you run the script, press Enter to

continue the installation. If all goes well,

a message will tell you that the installa-

tion completed successfully.

Next, go to the /usr/local/hyperic/

server-4.0.1/bin directory and run the

command

/hq-server.sh start

to start your HQ server. When the HQ

server starts up for the first time, it

might take several minutes to initialize.

Subsequent startups will be much faster.

Once the HQ server reports that it has

started successfully, you can log in to

your HQ server at http:// 10. 10. 1. 22:7080/

with the following credentials:

username: hqadmin

password: hqadmin

To change your password, log in to the

HQ server, click the Administration link,

choose List Users, then click on the

hqadmin user.

If you have any problems with the in-

stallation, you will find an installer log

file at /usr/local/hyperic/hyperic-hq-in-

In this article, the target machine on

which the agent is installed is intended

to model the high-performance Linux

and Java application servers you might

find in a high-volume, high-traffic web-

site. Specifications are:

Target Host01 Loading install configuration...

02 Install configuration loaded.

03 Preparing to install...

04 Validating server install

configuration...

05 Checking server webapp port...

06 Checking server secure webapp port...

07 Checking server JRMP port...

08 Checking server JNP port...

09 Verifying admin user properties

10 Validating server DB configuration...

11 Installing the server...

12 Unpacking server to: /usr/local/

hyperic/server-4.0.1...

13 Creating server configuration

files...

14 Copying binaries and libraries to

server installation...

15 Copying server configuration file...

16 Copying server control file...

17 Copying server binaries...

18 Copying server libs...

19 Setting up server database...

Listing 1: Installing Hyperic

Hyperic HQ

37ISSUE 102MAY 2009

staller/installer-4.0.1/./hq-install.log.

After authentication to the web user in-

terface (Figure 1), the HQ dashboard will

appear. Notice that no hosts are being

monitored because the agent is not yet

installed on any of the nodes.

The agent can run on almost any ma-

chine that supports Java. Agents with

easy-to-use installation packages are

available for Windows, Mac OS X,

Linux, and Solaris, and a platform-inde-

pendent version, which comes bundled

with or without a JRE, can run on any

operating system that supports Java.

Either install the agent with the server

installer by selecting installation option

2, or deploy a standalone installation to

save disk space. The standalone agent

and the server installation differ in size

by 94MB, so if you are deploying a large

number of nodes with a tool such as

Cfengine [2], it is better to use the stand-

alone agent installer.

First, download the HQ Agent installa-

tion package [1] for the operating system

on which the agent will be deployed. If

your OS is not listed on the download

page, select Platform Independent and

make sure a supported JRE is present on

the system. For this, I selected the 32-bit

Linux tarball installer, but I could have

used the Red Hat RPM because the target

is a Red Hat Linux server.

Next, open a terminal as root and cre-

ate a hyperic user and directory to de-

ploy the agent installation. The hyperic

user’s home directory should be owned

by hyperic.

mkdir /usr/local/hyperic

useradd hyperic -d

/usr/local/hyperic

chown hyperic:hyperic

/usr/local/hyperic

Now unzip the Hyperic agent installa-

tion tarball in /usr/local/hyperic

$ tar -xvzf hyperic-hq-

agent-4.0.2-939-x86-linux.tgz

and change directory to the unzipped

 installation:

$ cd hyperic-hq-agent-4.0.2

The first time the agent is executed, it

will prompt the user for various configu-

ration parameters, such as the IP address

of the management server, and it will

generate a configuration file that is used

the next time the agent is started. Most

of the defaults can be accepted as is or

changed according to the user’s needs.

Now start the agent with the following

command:

$ bin/hq-agent.sh start

Provided the networking information is

correct and no firewall rules are interfer-

ing with the communication between

your server and agent, the agent should

quickly sync up with the server (see List-

ing 2). Once the agent is installed on the

host, its services should be detected by

the auto-discovery process of Hyperic

HQ (Figure 2).

The currently running servers and ser-

vices on the target host are automatically

detected and made available for the

monitoring inventory. Just select the ser-

vices you want to monitor and click Add

to Inventory. The HQ Server will begin

collecting performance and availability

data from the target host.

Now you can view the host in the Re-

cently Added section of the dashboard or

by navigating to the top menubar and

clicking Resources | Browse.

NOTE: Please make sure all servers are

synchronized with an NTP server; other-

wise, you might have some difficulties

viewing the graphs on target systems be-

cause of NTP drift.

Hyperic offers robust features for moni-

toring and managing many types of ap-

plications, but the tool provides special

integration with enterprise Java applica-

tions and application servers.

When it comes to the enterprise, most

system administrators need to go beyond

the simple “service is up or down” mon-

01 Starting HQ Agent. . .

02 - Unable to load agent token file. Generating a new one . . . Done

03 [Running agent setup]

04 What is the HQ server IP address: 10.10.1.22

05 Should Agent communications to HQ always be secure [default=no]:

06 What is the HQ server port [default=7080]

07 Testing insecure connection . . . Success

08 What is your HQ login [default=hqadmin]:

09 What is your HQ password:

10 What IP should HQ use to contact the agent [default=10.10.1.23]:

11 What port should HQ use to contact the agent [default=2144]:

12 Received temporary auth token from agent

13 Registering agent with HQ

14 HQ gave us the following agent token

15 1230453862315-22390840293-39928390561937

16 Informing agent of new HQ server

17 Validating

18 Successfully setup agent

Listing 2: The Agent Syncs with the Server

Hyperic HQ

38 ISSUE 102 MAY 2009

itoring of core services. The focus is in-

stead on gathering complex metrics in-

side an application to understand how

the infrastructure is performing. The

next frontier is application monitoring.

Most conventional monitoring solutions

do not have the ability to poke inside the

application or database without custom

tools or scripts.

Hyperic has more than 70 built-in

plugins for managing and monitoring

various application servers, database

servers, web servers, Xen servers [3],

VMware ESX servers, and more. When

configuring application and database

servers such as WebLogic, JBoss [4], or

Oracle Database and MySQL [5], it can

become rather cumbersome to integrate

trending of performance metrics into an

all-in-one monitoring solution. Usually

trending such application-specific met-

rics is a highly customized, manual pro-

cess that requires custom scripting or

writing proprietary tools.

Hyperic automatically collects the

most common metrics of interest in al-

most all of the most popular database

servers, application servers, middleware,

and network equipment. Hyperic trends

performance data for these types of ap-

plications and platforms, automating

what is otherwise a time-consuming,

high-overhead process.

For example, if a JBoss application

server is running on the target host, the

HQ Agent will automatically discover the

JBoss server and collect metrics such as

transactions, JVM heap usage, thread

count, hibernate statistics, and active

connections (Figure 3). Hundreds more

application metrics can be graphed,

trended, reported, and alerted on, and

each application’s metrics are custom

tailored to be relevant to the type of ap-

plication. For example, when installing

the HQ agent on a server running an Or-

acle or MySQL database, the application

metrics show SQL statistics in addition

to the other application metrics.

In addition to the default metrics avail-

able for the standard 70 officially sup-

ported application plugins, custom met-

rics can be developed and implemented

for items not present in the system of

logical defaults. The Hyperic website has

a list of products and technologies that

HQ can natively manage and trend.

For a closer look at Hyperic HQ in a real

situation, consider the case of a JBoss

Java application server. JBoss is an ex-

cellent choice for a Java Application

Server platform; a free, open source

community version of JBoss is available

at http://www.jboss.org/jbossas/down-

loads/.

The first step in monitoring JBoss is to

enable and configure the Java Manage-

ment Extensions (JMX). JMX is a stan-

dard Java API that allows for default and

custom monitoring of various attributes

related to Java applications and the Java

Virtual Machine.

The Sun JDK exposes certain MBeans

to the user by passing the -Dcom.sun.

management.jmxremote argument,

which allows you to connect to the Java

Virtual Machine’s MBeanServer via JMX.

This feature lets you access metrics from

the JVM itself with Hyperic HQ or any

other JMX client.

To access the JBoss MBean server

through JMX, you need to pass some ad-

ditional parameters to JBoss at startup.

JBoss includes a start script to set all pa-

rameters that can be modified to include

custom management arguments. The ar-

01 #!/bin/sh

02 ### ===========================

03 ###

04 ##

05 ## JBoss Bootstrap Script

06 ##

07 ### ============================

08 ###

09

10 ### $Id: run.sh 64199 2007-07-23 15:57:38Z cazzius $ ###

11 JBOSS_JMX="-Djavax.management.builder.initial=org.jboss.system.server.jmx.

MBeanServerBuilderImpl -Djboss.platform.mbeanserver"

12 SUN_JMX=-Dcom.sun.management.jmxremote.port=5555 -Dcom.sun.management.

jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false"

13 JAVA_OPTS="$JBOSS_JMX $SUN_JMX"

14

15 ...

Listing 3: JBoss Startup Script

Hyperic HQ

39ISSUE 102MAY 2009

guments can also be passed to the JVM

on the command line, but it is better to

keep them stored in a script.

To enable JMX remote connections

and enable access to the JBoss MBean-

Server, start by making a copy of

$JBOSS_HOME/bin/run.sh to modify:

cp $JBOSS_HOME/bin/run.sh

$JBOSS_HOME/bin/run-jmx.sh

Next, add an environment variable at

the beginning of this run-jmx.sh script

to set the custom JMX monitoring argu-

ments (Listing 3). The JMX options that

are specific to JBoss and the Sun JVM

have been separated for modularity and

put in the JAVA_OPTS argument, which

is used by JBoss at start time.

Now set executable permissions

chmod 750 run-jmx.sh

and start JBoss with the -b <public IP

address> option. Otherwise, JBoss will

only bind to the localhost address and

startup messages will be written to the

console.

First make sure the network configura-

tion is set up properly in the /etc/hosts

file. Leaving this file as a default can

cause problems with port bindings on

the application server.

Once the message that follows is writ-

ten to the console, the server will be up

and ready for monitoring with JMX:

15:09:44,394 INFO [Server]

JBoss (MX MicroKernel)

[4.2.3.GA (build:

SVNTag=JBoss_4_2_3_GA

date=200807181439)]

Started in 9s:380ms

To discover automatically the JMX ser-

vices of the Sun JVM, modify agent.

properties to include this line:

jmx.sun.discover=true

If the agent is already running, the above

line will require that you restart the

agent, as in the following line:

/usr/local/hypric/agent-4.0.2/

bin/hq-agent.sh restart

Now that JMX is enabled on the server

and imported into Hyperic, a massive se-

lection of monitoring and trending op-

tions is available. With the use of regular

expressions on particular MBeans and

attributes, you can create custom queries

and then import them into the monitor-

ing dashboard for trending over time.

This strategy is especially helpful when

monitoring custom applications that

have their own custom JMX MBeans and

attributes because Hyperic lets you cen-

tralize the monitoring with a standard

interface. For more information on cus-

tomizing and extending the Hyperic JMX

plugin, see the Hyperic website.

Hyperic makes application metrics avail-

able with little to no configuration

through the use of a system of logical de-

faults. Most application monitoring re-

quires a special additional suite of soft-

ware, which can be tedious to imple-

ment. On the other hand, Hyperic HQ

out of the box can collect the most rele-

vant performance and service metrics for

the most commonly used software and

do so with little to no need for manual

configuration.

The primary difficulty in performance

and enterprise monitoring is extending

the solution into all of the particulars of

a custom application, the database, and

web servers that typically require a suite

of expensive, proprietary monitoring

tools. Hyperic brings a new era to enter-

prise monitoring by focusing on deep,

application-specific performance metrics

and making them virtually free of the

need for configuration.

Hyperic HQ is supported by a commu-

nity. In addition to the built-in support

for more than 70 common products,

other plugins for additional products and

technologies are available from the HQ

community site. The HQ server itself is

open source, so anyone can modify and

contribute to the code; however, most

developers contribute to the project by

creating plugins for new applications

and new server types.

Hyperic HQ does an impressive job of

application monitoring and removes the

need to spend long hours scripting cus-

tom application-specific monitoring tools

or to purchase expensive, third-party al-

ternatives. p

http:// www. hyperic. com/ downloads/

 index. html

http:// www. cfengine. org

http:// www. xen. org

http:// www.

 jboss. org/

http:// dev. mysql. com/

INFO

Matthew Sacks is a system adminis-

trator and technical writer from Los

Angeles, CA. He runs a technology

http:// www.

 thebitsource. com. You may contact

him at matthew@matthewsacks.com.

T
H

E
 A

U
T

H
O

R

A best practice is to monitor only the ser-

vices and applications that are of impor-

tance to the administrator; otherwise, the

data becomes less effective under the

weight of irrelevant information.

Also, make sure you establish a strategic

alerting and escalation policy by configur-

ing alerts that meet multiple conditions.

This approach will prevent unnecessary

3am wake-up calls alerting you to a single

server that is out of disk space on /tmp.

It takes a significant amount of time and

tuning to get a proper monitoring policy

that works. Often you’ll need a period of at

least one or two weeks to narrow down

the proper alerting thresholds and identify

what you need to monitor. My recommen-

dation is to identify the critical business or

organizational processes in order of prior-

ity and then map which IT infrastructure

services support those processes. From

there, you can draft and test a monitoring

and alerting policy. In the first phase, alert-

ing thresholds and monitoring metrics

should be loose. Over the course of a

week or so, identify any unnecessary

items, and remove them one at a time.

If the monitoring policy is targeted and

well designed, the one or two week grace

period provides a fairly simple and

smooth transition. Starting with an open,

noisy monitoring and alerting policy en-

sures that monitoring metrics and alerts

that would normally be of interest are not

accidentally filtered out.

Monitoring Best Practices

Hyperic HQ

40 ISSUE 102 MAY 2009

