
hen I started out in computers

a long time ago, I remember

you could open files (images,

documents, you name it) without having

to worry about viruses because, well, ev-

eryone knew you could only get viruses

from executable files like .exe, .bat, and

.com in the Windows world. In the Linux

world, if you could actually get your

email client to run an executable at-

tached to an email automatically, you

probably had the good sense not to. I re-

member laughing at someone who asked

if they had to worry about getting a virus

from looking at images sent to them via

email. The times, they have changed.

File-based attacks are now common-

place; at the time of this writing, a PDF-

based exploit had become public, and

Adobe had announced that they would

fix it – in about two weeks. In the mean-

time you can … uhh …

not read any PDF files, I guess, if you

use Adobe Reader to view files. Luckily,

most Linux users do not use Adobe

Reader to view PDF’s, but many will

have Adobe Flash installed (exploitable

via SWF files before Flash Player

10.0.12.36 for Linux), or OpenOffice

(EMF and WMF files before OpenOffice

2.4.2). The list goes on and on: image

files, font files, web pages, you name it.

Many major applications have at some

point failed to parse the files properly

that they were designed to handle, al-

lowing attackers to create files that can

execute arbitrary code when opened.

The basic premise of file or protocol

fuzzing is you subtly (or not so subtly)

create input that is malformed. This can

be done by such methods as simply flip-

ping random bits in a file or protocol

stream to creating a full-featured pro-

gram or test suite that knows how to

generate valid (and thus invalid) files or

input for various protocols. An excellent

example of a file fuzzer is Michael Za-

lewski’s mangleme CGI program. If you

install this CGI program on a web server

and a client web browser connects to it,

the mangle.cgi script creates a randomly

generated HTML file that includes a

META REFRESH tag, causing the web

browser to reload the script (and get a

different randomly generated HTML

page). This lets you point a web browser

at the URL with the mangle.cgi script

and wait for the browser to crash (which

it will, eventually, in most cases). The

use of META REFRESH addresses one of

the biggest problems with fuzzing files:

getting a program to load a series of files

one after the other in an automated fash-

ion so that a human being doesn’t have

to sit there opening files.

This leads to some interesting prob-

lems and opportunities when fuzzing.

On the one hand, you can very quickly

and very cheaply run a program against

a battery of tests: Leave a browser

pointed at mangleme for a few days and

it will go through several tens of thou-

sands of test cases. Each request gener-

ates a log entry with the identifying num-

ber of the test case, which allows you to

reproduce the problem. Given this, how-

ever, it can still be difficult to reproduce

or verify results in some cases. For exam-

ple, with Internet Explorer version

7.0.5730.13, the mangleme test case

0x6dc61276 doesn’t appear to have any

effect, except on one machine on

which I have PowerDVD 6.0 in-

stalled, in which case it will reli-

ably crash Internet Explorer

and create an empty file

called su0.mpg on the desktop

without any prompting. This

shotgun approach to security

testing is not terribly accurate,

but, much like blasting away

with a shotgun in a forest, you

will eventually hit something of

interest (it just might not be

what you’re looking for).

Random fuzzing presents

several problems. For exam-

ple, you are unlikely to find

We explain how file or protocol fuzzing leads to direct improvements in

code quality. You'll also learn more about available open source fuzzing

tools. BY KURT SEIFRIED

Security Lessons

66 ISSUE 102 MAY 2009

certain boundary conditions by simply

trying random junk; integer overflows

and underflows are a common problem,

but to trigger them you need to mangle a

file or protocol traffic in a specific man-

ner. Many programs use C’s signed long

int (which supports values from

-2147483647 to 2147483647) to specify

the length of data fields and so on. This

leads to several interesting values:

0x7fffffff, which is 2147483647 (the max-

imum), and 0x80000000, which is

-2147483648 (the minimum value that

can be stored). If the program does not

properly calculate values, you can end

up with a situation in which adding two

positive numbers together results in a

negative number or adding a negative

number to another number results in an

even larger number. If these values are

used to allocate memory for storing

user-supplied data, then a classic buffer

or stack overflow is the typical result,

and these often are exploitable and can

allow for arbitrary code execution.

One of the things I find most fascinating

about software is that almost all the cost

in creating it is in the first copy, once

you’ve done that you can stamp out a

million copies for virtually nothing.

Writing a file fuzzing or protocol fuzzing

tool is no different. Understanding a file

format is not cheap. The basics of PDF,

for example, are defined in a 756-page

document [1]. This does not cover the

entire contents of what can be in a PDF

because you can embed various image

formats and even JavaScript into a PDF

file now.

Now I’m guessing that a complete set

of documentation for PDF, all the image

files it supports, JavaScript, etc. would

run to several thousand pages (which is

why running a PDF file viewer with

fewer features is probably a good idea if

you are worried about security). How-

ever, once you have read this documen-

tation and built a full-featured fuzzer,

chances are good that you would be able

to find exploitable bugs quickly. An ex-

ample of this is the PROTOS test suite [2]

from the University of Oulo in Finland.

Using a framework from Codenomicon

Ltd., a relatively small group with a lim-

ited budget was able to write protocol

testing suites for WAP, http, LDAP,

SNMP, SIP, H.323, ISAKMP, and DNS.

The test suite was so successful at find-

ing bugs, the CVE project was unable to

assign the normal one CVE number per

bug and instead had to aggregate them

under a few numbers because so many

flaws were found.

If you’re looking to play with fuzzing

tools, or just generally stress test your

system and software, a number of op-

tions are available (Table 1).

Some of the tools, like mangleme and

QueFuzz, can be up and running in min-

utes. Others, like SPIKE, have a pretty

steep learning curve and are aimed more

at people wanting to write their own

custom fuzzing tools for research pur-

poses (they have a learning curve

shaped much like the Matterhorn).

The good news is that fuzzing tools have

lead to direct improvements in code

quality. It’s hard for a developer to argue

with a test case (in the form of a file or a

network data stream) that causes your

application to fall over or otherwise be-

have badly. In a best case scenario, this

could even lead to developers writing

more robust code that isn’t as prone to

bad or malformed data inputs, although

if history is any indicator, this isn’t likely

to happen anytime soon. The bad news

is that as bad guys get smarter, they to

will start using fuzzing tools to find

flaws that they can exploit (witness the

current 0-day attacks against Adobe Ac-

robat and Microsoft Excel and the Con-

ficker worm, which had reportedly in-

fected 15 million Windows systems as of

January 26, 2009). p

Security Lessons

67ISSUE 102MAY 2009

Kurt Seifried is an

Information Secu-

rity Consultant spe-

cializing in Linux

and networks since

1996. He often won-

ders how it is that technology works

on a large scale but often fails on a

small scale.

T
H

E
 A

U
T

H
O

R

[1] PDF specification:

http:// www. adobe. com/ devnet/

 acrobat/ pdfs/ PDF32000_2008. pdf

[2] PROTOS: http:// www. ee. oulu. fi/

 research/ ouspg/

INFO

Tool Description URL

mangleme A random HTML generator http:// lcamtuf.coredump.cx/

soft/ mangleme.tgz

Browser Fuzzer 2 A browser fuzzer that generates http:// www.krakowlabs.com/

 random CSS, DOM, HTML, dev/ fuz/ bf2/ bf2.tar.gz

 and JavaScript

fzem Email client fuzzer (generates http:// www.krakowlabs.com/

 invalid server replies, etc.) dev/ fuz/ fzem/ fzem.tar.gz

fsfuzzer Filesystem fuzzer (ntfs, ext3, http:// projects.info-pull.com/

 ext2, vfat, iso9660, etc.) mokb/ fsfuzzer-0.6.tgz

FileP and FileH Python- and Haskell-based http:// www.isecpartners.com/

 fuzzers that mutate a list of files file_fuzzers.html

 and feed them to applications

ProxyFuzz A man-in-the-middle fuzzer that http:// theartoffuzzing.com/

 can randomly mutate network downloads/ proxyfuzz/ proxy

 traffic fuzz.py

Peach Fuzzing Platform An entire fuzzing platform http:// peachfuzzer.com/

 with data modeling and state

modeling

GPF Takes network captures, http:// www.vdalabs.com/

 modifies the data, and sends tools/ efs_gpf.html

 it to a server to see what

happens

SPIKE C-based fuzzer creation toolkit http:// www.immunitysec.

 for network fuzzing com/ resources-freesoftware.

shtml

QueFuzz Uses iptables to intercept http:// code.google.com/ p/

 and mutate network packets quefuzz/

Table 1: Fuzzing Tools

