
n the late 1960s, “multimedia” was a

new term connected typically to the

work of artists such as Andy Warhol.

Although Warhol was not the only artist

working in this domain, his Exploding

Plastic Inevitable performances defined

the multimedia event. An EPI show si-

multaneously included film, projected

images, dancers, music, recitations, and

so on, for an effect calculated to over-

whelm the senses. By comparison, the

multimedia experience on your com-

puter is relatively restrained, but it can

be colorful and exciting.

A computer-based multimedia produc-

tion comprises text, graphics, sound,

and video, but these elements can be

combined into a media-rich presenta-

tion, an interactive audio/ video installa-

tion, or a stroke-inducing first-person ac-

tion game. Each combination is a true

multimedia production. Like the original

multimedia events, they require abun-

dant resources. Modern machines have

plenty of drive space and RAM, fast

CPUs, and powerful video capabilities,

but modern multimedia software can

test the performance envelope of even

the most powerful desktop computer.

In this article, I look at the Linux ker-

nel’s integral support for the hardware

and software required by machines in-

tended for the production and presenta-

tion of rich media formats. Because of

space limitations, I can only touch on

some of the factors required to optimize

that support, but I hope my efforts in-

spire you to compile your own media-

optimized kernel. The source code is

free, the build process isn’t terribly com-

plicated, and the results can yield a con-

siderable improvement in audio and

video performance.

The Linux kernel provides support for

multimedia with drivers for a variety

of devices (sound cards, video boards,

graphics tablets, etc.) and code for fea-

tures of various motherboard chipsets.

The kernel's openness and modularity

invite extension by developers who want

to add new capabilities to the existing

kernel services.

Before you compile the kernel, you

must configure its options, usually with

the help of a menu-based utility that

presents the configuration options and

preferences in an organized GUI (Figure

1). The scope of this article is restricted

to those parts of the kernel configuration

that apply to the topic (i.e., support for

multimedia), and the following descrip-

tions and explanations assume some

 experience in compiling programs from

source code. However, even if you’re a

complete novice, Google can direct you

to text and video guides for the process.

It’s not terribly difficult, and if you’re

 patient and thorough, it might be fun.

The first settings will be made in the Pro-

cessor type and features section. The pro-

cessor type is an easy choice, but if

you’re not sure what CPU is in your ma-

chine, just issue the uname -a command

at a terminal prompt.

This tool will respond by listing vari-

ous facts about your hardware and its

operating system. For example, on my

notebook, I’m running Ubuntu 8.10 with

a kernel patched for real-time operation.

The uname utility reports the following

information about my system:

dlphilp@maximus:~$ uname -a

Linux maximus 2.6.27-3-rt #1

PREEMPT RT Mon Oct 27

03:05:19 UTC 2008 i686 GNU/Linux

From this report, I learn that my kernel

is numbered 2.6.27-3-rt, that it’s running

on the first (#1) of a dual-core machine,

and that it has been compiled for full

preemption. Also, I know that my CPU

We’ll show you how to tune up your Linux system for multimedia

 applications. BY DAVE PHILLIPS

Multimedia and the Kernel

38 ISSUE 100 MARCH 2009

038-041_realtime.indd 38 14.01.2009 17:09:08 Uhr

type is an i686, a post-Pentium processor

type. Actually, it’s an AMD Turion-X2,

configured as a single-core 32-bit i686

(with the CONFIG_X86 kernel option) so

that I can use certain software that will

not run on a dual-core 64-bit machine.

Successful multimedia performance of

any kind is critically dependent on tim-

ing. Audio and video need tight synchro-

nization, and sound needs to be free of

dropouts and spurious noise. Fortu-

nately, the modern Linux kernel pro-

vides the necessary components, but

your distribution might not have the op-

tions enabled for those timers. To ac-

quire the benefits of better timing, you

might need to recompile your kernel.

The high-resolution timers option

(CONFIG_HIGH_RES_TIMERS) enables a

“tickless” system with a timing accuracy

of about 1msec on most contemporary

machines – a considerable improvement

over the standard hertz-based timer res-

olution. Introduced in kernel 2.6.21, the

tickless system reduces the load on the

system clock by shutting off the timer in-

terrupt (the tick) whenever the system

idles. This process saves power on lap-

tops and notebooks and improves multi-

tasking performance. The option for

high-resolution timers can be enabled

without the tickless system, but in an

optimal multimedia system, make sure

that CONFIG_NO_HZ is set to true.

The high-performance event timer

(HPET) was once known as the multi-

media timer. According to its entry in

Wikipedia, this timer “… can produce

periodic interrupts at a much higher res-

olution than the RTC [real-time clock]

and is often used to synchronize multi-

media streams, providing smooth play-

back and reducing the need to use other

timestamp calculations.” The option

(CONFIG_HPET_TIMER) is machine

 dependent and will not work on older

hardware or operating systems, includ-

ing the Linux 2.4 series. It also requires

the rtc-cmos driver instead of the tradi-

tional RTC driver discussed next.

Which of these timers should you use?

On my JAD 1.0 box (openSUSE 10.2),

the HPET and the high-resolution timer

options are both compiled into the ker-

nel. Clocks and timers operate transpar-

ently on Linux, so don’t worry about

loading modules or installing other con-

trol software. The kernel

module loader handles

everything. You did enable

the support for loadable

modules, didn’t you?

At this point, I’ll include

a word about Ye Olde Way

of configuring high-resolu-

tion timing at the kernel

level. Users of pre-2.6 ker-

nels might not have access

to the new timers, but they

can still set up their ker-

nels for enhanced resolu-

tion. The CONFIG_HZ op-

tion allows frequency set-

tings for 100, 250, and

1,000Hz, the last of which

is the preferred resolution

for any system running

audio and MIDI applica-

tions. Conventional wis-

dom advises compiling the

RTC driver, again a necessity for high-

resolution audio and MIDI event timing.

Note that the timer frequency option is

available in the Processor type and fea-

tures section of your kernel configura-

tion, but the RTC driver is selected in the

Device Drivers section.

Timers aren’t the only items of interest

in this section; you can also decide on

the degree of preemption you intend for

your kernel, but first, consider the topic

of preemption in the Linux kernel.

As users’ needs have become more so-

phisticated, their demands on computer

hardware have become greater. Multi-

tasking is an ordinary aspect of modern

computing, and although multitasking is

indeed a lovely thing, it also creates a

world of concerns for multimedia pro-

duction and playback. Without some

sort of process control, applications will

clash over access to system resources

and services, causing audio dropouts,

stuttering video, and even complete sys-

tem lock-ups. Under normal circum-

stances, most users will be happy with a

non-preemptive kernel, but if your appli-

cations need priority access to resources

and services, the normal kernel sched-

uler might not suffice. Preemption is a

way to guarantee an application’s prior-

ity status, keeping other processes from

interfering with its operations. For exam-

ple, when I record with Ardour, I need to

be absolutely certain that no other pro-

cess is going to knock Ardour aside. The

preemptive kernel saves the day.

Preemption is available in four modes.

The first sets no preemption at all and is

the default for servers. Voluntary pre-

emption, the second mode, is the default

for normal desktop use without timing-

critical applications. The third option

provides a low-latency system for users

who want an optimal system for multi-

media performance from applications

such as games and audio/ video players.

The fourth choice, complete preemption,

is for users who want a media produc-

tion platform, either in a studio setting

or as a real-time performance system.

Your choice of preemption mode de-

pends on your needs, so choose wisely.

As you shall see, a preemptive kernel

can have its own problems.

Without the correct drivers, your shiny

new cards and USB add-ons won’t yield

so much as a squawk, so again be sure

you’ve selected the right drivers for your

hardware. Although you can build all the

available drivers as modules for the ker-

nel to load as needed, if you must be

conscientious about space, you can build

only the modules you need for your cur-

rent hardware. For a multimedia system,

look closely at kernel support for your

graphics hardware, video devices, and

sound cards.

Multimedia and the Kernel

39ISSUE 100MARCH 2009

038-041_realtime.indd 39 14.01.2009 17:09:10 Uhr

Kernel drivers for graphics adapters

have code for hardware from various

manufacturers. Just find your device and

select the proper driver. However, bear

in mind that these drivers work closely

with the X Window System, and the

overall performance of your graphics

display(s) will be determined by the op-

timal combination of X and the kernel

driver. Other potentially relevant options

include /dev/agpgart support for older

machines, a direct rendering manage-

ment system for certain video chipsets,

and support for framebuffer devices.

The default kernel sound system is

from the Advanced Linux Sound Archi-

tecture project (ALSA). To activate sound

support in the kernel, select the CON-

FIG_SOUND and CONFIG_SND options.

Next, choose the driver corresponding to

your sound hardware. This step is poten-

tially confusing: Your sound card might

not be listed, but its chipset could be

supported by the ALSA drivers. For a

complete list of supported devices tabu-

lated by sound card, manufacturer, and

chipset names, see the ALSA website’s

SoundCard Matrix.

If your sound hardware is connected

to a USB port, you’ll need to enable the

CONFIG_SND_USB and CONFIG_SND_

USB_AUDIO options. PCMCIA cards will

require the CONFIG_SND_PCMCIA op-

tion, and similar options exist for sound

support with PowerPC, Sparc, ARM, and

other non-x86 Linux-capable platforms.

The kernel configuration utility lists

Open Sound System (OSS) modules as

deprecated, but they are still usable. The

older OSS system can be employed if

ALSA can’t be used, but I would advise

the use of the OSS/ Free package [1] in-

stead of the kernel’s OSS modules. OSS/

Free is now open source software, and

the current package is an exceptionally

stable and powerful alternative to ALSA.

Also, it is easy to install and can be used

within an otherwise ALSA-based system.

The Multimedia Devices section includes

essential support for video and radio

capture devices. If you work with a web-

cam, a television card, or a radio tuner,

you’ll need to activate the video4linux

(V4L) driver by selecting the CONFIG_

VIDEO_DEV option. Recent kernels in-

clude extensive support for a variety of

video capture devices, so be sure to scan

the list of supported hardware. First se-

lect the relevant option(s), and be sure

to enable the CONFIG_V4L_USB_DRIV-

ERS option if you plan to use a USB-

connected capture or encoding device.

As previously mentioned, the drivers

section includes the option to build the

driver for the enhanced real-time clock

(CONFIG_SND_RTCTIMER). When this

option is selected, you will be given the

opportunity to declare RTC as the default

timer for the ALSA sequencer (a MIDI

dataflow manager). Consider this option

a necessity. This section also includes an

option for building the driver for an IEEE

1394 port, more familiarly known as the

Firewire port. Firewire is an excellent

data transfer protocol, designed to han-

dle high-capacity streams, but Linux

support is relatively new. This option in-

cludes a stable and an experimental

driver; choose the option that best ap-

plies to your hardware.

Disk drive performance should be op-

timal. The drive type (IDE, SCSI) is not

so important as it once was, but if your

system includes IDE drives, you should

check a few options in the subsection for

ATA/ ATAPI/ MFM/ RLL support. In the

IDE/ ATA/ ATAPI Block Devices section,

you need to find and accept the options

for Generic PCI Bus-master DMA Support

and Use PCI DMA By Default When

Available. These options enable DMA

(direct memory access) for your disks,

which is helpful with low-latency disk-

intensive work. However, even with

these options, you might still need to op-

timize your disk performance with the

hdparm utility. The following command

enables 32-bit I/ O and turns on DMA

support for the IDE hard drive in my

JAD 1.0 machine:

hdparm -c 1 -d 1 /dev/hda

For a status report on the indicated de-

vice, run the utility without parameters.

Incidentally, if you know nothing about

hdparm, its manual page is required

reading before you use the tool. Some of

hdparm’s parameters are dangerous, but

fortunately, you need only the two flags

shown above to improve the perfor-

mance of your IDE drives.

The Block Layer configuration section in-

cludes three options for choosing your

system’s I/ O scheduler. The Anticipatory

scheduler is the normal system default,

the Deadline scheduler is recommended

for systems running large databases, and

the CFQ scheduler is advised for load av-

eraging on normal desktop systems. If

you choose to build all three schedulers,

you must declare one to be the system

default. The CFQ option is the scheduler

of choice for low-latency systems.

The Kernel Hacking section includes

support for the Magic SysRq key (CON-

FIG_MAGIC_SYSRQ), a handy amenity

for anyone using a preemptive kernel.

This option enables the use of the SysRq

key in combination with other keys to

recover a frozen machine or reboot a

machine without corrupting the filesys-

tem. The Magic SysRq Key page on

Wikipedia has a full list of magic key

combinations.

On the Wikipedia disambiguation page

for “latency,” numerous references share

the common identifying factor of a time

delay between an event’s initiation and

its realization. Under normal circum-

stances, latency might not be an issue,

but as playback and production de-

mands increase, so does the possibility

for disruptive latency. Much of the infor-

mation here is directed toward lowering

latency, but a normal Linux kernel can-

not reach the range of latency consid-

ered to be acceptable in professional ap-

plications. Fortunately, thanks primarily

to the work of kernel developer Ingo

Molnar, a set of patches are available

that can dramatically reduce latency in

the kernel – down to and beyond profes-

sional limits [2]. Most of the media-opti-

mized Linux distributions include a real-

time kernel, and most of those kernels

are patched with Molnar’s work.

Machine CPU Distribution Kernel nVidia Driver

Big Black AMD 3200+ (64-bit) 64 Studio 2.1 (Debian) 2.6.21-1 169.12

The3800 AMD 3800+ (32-bit) JAD 1.0 (openSUSE) 2.6.19-5 169.12

Maximus AMD Turion-X2 (32-bit) Ubuntu 8.10 (Debian) 2.6.27-3 177.80

Table 1: Machine Details at Studio Dave

Multimedia and the Kernel

40 ISSUE 100 MARCH 2009

038-041_realtime.indd 40 14.01.2009 17:09:10 Uhr

Molnar has identified six traditional

sources of latency in the Linux kernel:

s #ALLSTOTHEDISKBUFFERCACHE
s -EMORYPAGEMANAGEMENT
s #ALLSTOTHE/proc file system

s 6'!ANDCONSOLEMANAGEMENT
s &ORKINGANDEXITINGLARGEPROCESSES
s 4HEKEYBOARDDRIVER
These factors can delay the return of

control to the scheduler for several milli-

seconds, and with enough delay, audio

dropouts and video frame loss will

occur. Molnar’s patches tune these fac-

tors until kernel latency reduces to less

than 5msec, a very dramatic reduction

from the latency of an unpatched kernel

and within professional limits. However,

low latency also depends on audio hard-

ware capabilities, and in some instances,

latency might not be so reducible.

The term “real-time,” with regard to

the kernel, has two rather different

meanings. The real-time kernel I’ve been

configuring here is “soft”; that is, it can

promise to deliver the goods within a

certain time, but it can’t make a guaran-

tee. By contrast, a hard real-time system

guarantees the delivery within a speci-

fied time frame. In neither of these us-

ages do you find any necessary reference

to low latency, although typically, a real-

time system operates within tight time

constraints, even down to microsecond

levels. The essential difference between

hard and soft real-time systems is criti-

cality: If Ardour suffers an audio buffer

overrun, I might get upset over the re-

sulting glitch in my recording, but if the

real-time control system software for a

nuclear power plant misses a few beats,

then we’re all in serious trouble.

Table 1 compares the three machines I

use here at Studio Dave. All systems are

configured for PREEMPT and RT, and all

machines have nVidia graphics chipsets.

Big Black is my main production box,

which I use for recording with Ardour,

composing with Csound5, producing

CD/ DVDs, and managing all my teach-

ing-related activities. The3800 is used

mostly for composing with MIDI, watch-

ing movies and DVDs, and running Win-

dows music and sound software under

Wine. Until recently, it has also been my

box of choice for surfing the video web,

but that could change with the availabil-

ity of 64-bit Flash and the 64-bit Java

plugin. Maximus is my cutting-edge ma-

chine; it’s used mostly for testing soft-

ware that requires the latest Qt and Gtk,

such as Qtractor and Ardour3.

Big Black and The3800 run on distri-

butions optimized specifically for en-

hanced multimedia performance. Both

machines include M-Audio Delta 66

audio interfaces, and both report

5.8msec latency in the JACK audio

server. Maximus runs on a Molnar-

patched real-time kernel; otherwise, its

system is unmodified Ubuntu. It is also

the least stable of the three systems, and

I don’t plan to use it for audio or video

production purposes. Maximus is a note-

book with an Intel HDA audio chipset,

but I’ve added an Edirol UA25 USB inter-

face to its audio capabilities. Alas, I have

yet to bring latency below 11msec with-

out xruns (ALSA-speak for buffer excess

or insufficiencies), but I still have some

module options to explore.

All of my machines are set up to run

Jean-Pierre Lemoine’s AVSynthesis, a

program that manipulates and blends

image and sound into fantastic anima-

tions. Because it needs abundant re-

sources, it's an excellent application to

use to test multimedia capabilities. Its

sound production relies on Csound5

compiled for high-definition audio, its

video capabilities depend on OpenGL

and hardware-accelerated 3D graphics,

and it can be operated in real time.

I also looked for information regarding

kernels used by other optimized distri-

butions. Fedora-based Planet CCRMA [3]

offers stable real-time kernels from the

2.6.24 series and testing kernels from the

2.6.26 releases. Debian-derived Musix

[4] uses a stable 2.6.21 real-time kernel

in its 1.0 R2 release. Gentoo-based Bar-

dix 0.1 [5] employs a real-time 2.6.25

kernel. From this information, you can

see that distributions optimized for mul-

timedia production and performance

clearly prefer the 2.6 kernel series.

When considering your hardware, you

should exercise wisdom. Bigger and

faster are the watchwords for a powerful

multimedia system, but some caveats re-

main. Video is an especially tricky fac-

tor. If, like myself, you need to use nVid-

ia’s closed source drivers, you must re-

sign yourself to the possibility of inexpli-

cable problems when running a real-

time kernel. Because of its closed source

nature, you can’t know how the video

driver interacts with the kernel at levels

that affect latency and real-time re-

sponse. To nVidia’s credit, they do try to

keep up with Linux kernel development,

but the real-time patches are not official

patches, and until nVidia opens their

source code, kernel developers are un-

able to help users who experience per-

formance problems on real-time and

low-latency systems.

Also, you should keep your X window-

ing system current. X works closely with

the kernel video drivers, so to ensure

maximum performance, make sure that

X is up to date.

This topic goes much deeper than I’ve

been able to discuss here, but the web is

rich in relevant resources. For example,

you should have no trouble finding out

more about kernel configuration [6], low

latency [7], and real-time optimizations

[8], and I hope that some of you will

take the next steps toward compiling

your own kernel. Rolling your own is a

time-honored Linux tradition, and you

don’t need an engineering degree to do

it. Just be sure to keep your old kernel

around for booting into in case things

go wrong, breathe slowly and deeply,

be patient and brave, ask questions, and,

above all, have fun. p

[1] OSS/ Free:

http:// www. 4front-tech. com/ usslite/

[2] Ingo Molnar’s real-time kernel

patches: http:// www. kernel. org/ pub/

 linux/ kernel/ projects/ rt/

[3] Planet CCRMA: http:// www-ccrma.

 stanford. edu/ planetccrma/ software/

[4] Musix: http:// www. musix. org. ar/ en/

 index. html

[5] Bardix: http:// www. linuxmusicians.

 com/ viewtopic. php? f=4& t=696??

[6] LinuxForums’ guide to compiling

the Linux kernel:

http:// www. linuxforums. org/ forum/

 linux-kernel/ 55612-mini-howto-com

pile-linux-kernel-2-6-a. html

[7] The low-latency HOWTO:

http:// lowlatency. linuxaudio. org/

[8] The Real-Time Linux wiki:

http:// rt. wiki. kernel. org/ index. php/

 Main_Page

INFO

Multimedia and the Kernel

41ISSUE 100MARCH 2009

038-041_realtime.indd 41 14.01.2009 17:09:10 Uhr

