
Cross-Site Request Forgery (also
referred to as Cross-Site Refer-
ence Forgery, CSRF and XSRF)

is apidly becoming a serious security
problem of which most programmers
and users are blissfully unaware. CSRF
is a web-based attack that has grown out
of, and remains a close cousin to, the
more traditional Cross-Site Scripting
(XSS) attacks. In an XSS exploit, the at-
tacker inputs malicious content into a
web application (e.g., by creating a mal-
formed URL or embedding hostile code
in a response box) that results in hostile
content such as JavaScript being inserted
into otherwise safe content that then is
served to the victim. CSRF attacks take it
a step further by inserting hostile con-
tent that results in an action by the us-
er’s web browser, such as changing a fil-
ter setting within web-based email or
initiating a money transfer from an on-
line bank account.

A CSRF Attack Example
So you go to your favorite social net-
working site to chat with friends. Unfor-
tunately, the site in question allows

users to insert images into web-based
conversations (e.g., avatars for a forum).
Instead of using a URL such as:

<img src="http://random‑site/ U

image.jpg">

The attacker uses a URL such as:

<img src="http://social‑site/U

changepassword?newpassword= U

password000">

Thus when a user’s web browser at-
tempts to load the image it instead con-
nects to the social networking site and
executes a command to change the pass-
word.

This attack can also be leveraged from
other sites. For example, if a user re-
mains logged into the social network site
while browsing the web in another tab
and an image on another site points to
the change password URL, that tab
would execute the command, and unless
the site had specific CSRF protections in
place, the user’s password would end up
being changed.

CSRF attacks have become popular
for three simple reasons. The first is the
emergence of web-based services such
as email, online commerce, banking,
and so on. CSRF attacks can result in
money being sent to an attacker through
a web-based bank or stock trading site.
Web-based email allows an attacker to
reset or request copies of your pass-
words for various services such as DNS
registrars and online commerce sites. At-
tackers can monetize these attacks by di-
recting access to bank accounts, reset-
ting a user’s password, and so on. Some-
thing as simple as resetting a password
can result in an attacker holding a user’s
account, domain, or service hostage. For
a small fee, the attacker will reset the
password and return it to the user (see
Figure 1).

The second reason is the presence of
tabbed browsing. When web browsers
first came out, browsing the web was a
largely serial experience. It didn’t occur
to me for some time that I would ever
need more than one session because the
content wasn’t such that I wanted to
stay with it (web browsing was quite lit-
erally web browsing). However, with the
advent of web-based email, I now have
three sessions just sitting logged in so I
can send email quickly and be notified
when new email comes in. This means
that a CSRF attack is much more likely
to succeed because I am always logged
in to my web-based email (I use a sepa-
rate browser for my email to prevent ex-
actly this).

The third reason is that most web ap-
plications have no security. They are ab-
solutely terrible at filtering user input
properly, allowing attackers to inject ma-
licious content (such as JavaScript) via
any number of cross-site scripting vul-
nerabilities. Although I rarely visit hos-
tile websites, I visit a lot of “trusted”
websites that I know for a fact have poor
filtering that can result in XSS attacks,
ultimately allowing for CSRF attacks.

Sometimes, even ING, YouTube, The New York Times, and Google get it wrong. By Kurt Seifried

Cross-site scripting request forgeries

Attack of the CSRF

Security LessonsSYSADMIN

66 ISSUE 99  FEBRuary 2009

Additionally, few web ap-
plications implement
CSRF protections that will
prevent such attacks.

Defenses for
Programmers
The way to beat CSRF is
simple in concept, and de-
pending on your web-
based application, any-
where from easy to almost
impossible to implement
properly. To beat CSRF at-
tacks, an application sim-
ply has to verify that each
request is made properly;
in other words, your ap-
plication needs to main-
tain state so that the con-
tent in browser tab ‘A’ that
is logged into your web-based email is
the only one allowed to send email, and
a request made via content in browser
tab ‘B’ that is accessing a hostile website
does not result in email being sent or
read. To do this, your web application
has to maintain state information. But
the web was designed as a stateless sys-
tem from the very beginning, so any ad-
dition of state is going to require some
technical trickery because the web
browser itself can’t help you directly.

To link content in a web page to a re-
quest made from that web page properly
(i.e., the user fills out a form and hits
Submit), you need to pass a one-time
token in the content that the web
browser then passes back with the re-
quest, allowing you to confirm that the
request came from the right place.

Send and Receive Tokens
Now this one-time token can be sent

and received in a number of ways.
•	 Hidden Form Fields

<input type="hidden" name="token" U

value="randomstring" />

	 The advantage here is that many ap-
plications support adding form fields
and logic to process them. The disad-
vantage is that web pages that don’t
use forms but still allow interaction
can’t be addressed as easily by this
technique.

•	 URL Components (Within Either the
URL or Parameters)

http://example.org/newpassword?U

new=password&token=randomstring

	 This one has the advantage of making
the data available to the server, so you
could, in theory, have an Apache mod-
ule that validates all requests and sim-
ply blocks any invalid ones, prevent-
ing the application from ever seeing
them. The disadvantage (or potentially
an advantage depending on your point
of view) is that users can no longer
bookmark a page because the one-
time token will no longer be valid.

•	 Cookies

PHP: setcookie("TokenCookie", U

$randomstring);

	 Cookies must be enabled for this to
work, and potentially they can be sto-
len by a clever attacker (various
browser flaws have allowed for cookie
stealing over the years). The advan-
tage of this technique however is that
it is largely invisible to the user and
does not require either that HTML be
displayed to the user or that the URL
to be used be modified in any way.

•	 Requirements of the Back End
	 All of these examples require some

form of back end to store the session
data and create session tokens, com-
pare them, and allow or disallow re-
quests based on them. Additionally,
web-based applications might need to
be modified (e.g., if hidden form fields
are used to pass the data). The good

news is that more and more web ap-
plications are implementing this pro-
tection by default. For example, the
popular Joomla! Framework has the
JRequest::checkToken() function now.

Defenses for Web Users
The good news is that a number of de-
fenses against CSRF attacks are available
for web browsers. A common one is the
NoScript plugin for Firefox. Unfortu-
nately, for NoScript to be effective, you
need to disable JavaScript by default and
then selectively enable JavaScript for
sites you trust. This leads to obvious us-
ability issues because many sites do not
work at all or very poorly if JavaScript is
not enabled. Additionally, it will not pre-
vent an attacker from leveraging a cross-
site scripting flaw in a site you trust.

However, not all browsers support
such selective control over which sites
get to execute JavaScript. Another option
is simply to install a separate web
browser or run a separate instance of a
web browser and use it for trusted on-
line activities such as web-based bank-
ing and email.

One browser that has incorporated
this strategy is Google Chrome. Each
browser tab in Chrome is actually a sep-
arate process and not a thread running
within the same context as other threads
(tabs). Thus, the tabs cannot interfere
with each other, rendering most CSRF at-
tacks impotent. (To be attacked success-
fully, you would have to log in to a web-
based service, then using that same tab,
go to a hostile site.) n

SYSADMINSecurity Lessons

67ISSUE 99FEBRuary 2009

Kurt Seifried is an
Information Secu-
rity Consultant spe-
cializing in Linux
and networks since
1996. He often won-
ders how it is that technology works
on a large scale but often fails on a
small scale.

T
H

E
 A

U
T

H
O

R

[1]	� Cross-Site Request Forgery (CSRF):
http://​www.​owasp.​org/​index.​php/​
Cross‑Site_Request_Forgery

[2]	� Zeller, W., and Felten, E.W. “Cross-
Site Request Forgeries: Exploitation
and Prevention,” 2008, http://​www.​
freedom‑to‑tinker.​com/​sites/​default/​
files/​csrf.​pdf

INFO

Figure 1: Example of how the CSRF attack works.

User decides to check their account balance while browsing web

GET http://www.bank.com/
Loads bank.com, you login
and proceed to check your
account balance

TAB 1

GET http://compromised.com/
Return malicious HTML with
JavaScript

TAB 2

Attacker initiates money transfer via victim´s web browser

Authenticated to bank.com
Since there is no CSRF
protection any request from
tabs in this browser instance
will be authenticated and
accepted by bank.com

TAB 1

Hostile JavaScipt makes call to
bank.com requesting a money
transfer to the bad guys account
JavaSrcipt can be in hidden
inframe so victim never notices
for example

TAB 2

