
A full-blown GUI-based applica-
tion is beautiful to behold, but a
graphical interface is way more

trouble to create than a simple shell
script. If you like the simplicity of script-
ing, but you prefer a little more visual
feedback, Zenity (for Gnome environ-
ments) and KDialog (for KDE) are a pair
of tools you should know about. These
handy helpers let you integrate graphic
dialog boxes into your scripts.

Dialog boxes prompt users for input,
display output, or just report progress on
a process. Zenity and KDialog also out-
put error messages and general status in-

formation in the form of visual feedback,
and you’ll never need to type pathnames
painstakingly; instead, you can use a
graphical file browser.

Zenity [1] is included
by default with the
Gnome desktop in open-
SUSE, Ubuntu, and sev-
eral other distros. KDia-
log is often installed with
the default KDE environ-
ment. If your distribution
does not include these tools, install the
kde4‑dialog or zenity package to get
started. If you write scripts for other
people, the computers that run those

scripts will also need Zenity or KDialog.
It is a good idea to incorporate a test into
your script that checks for the presence
of Zenity or KDialog before invoking
their commands.

The simple Shell script in Listing 1 is a
good place to start. If you save the script

as zenity, type chmod
u+x zenity to make
it executable, and
then type ./zenity to
launch, you should
see a slider control as
in Figure 1. Because
the dialog box does
not have a name and

the text for the slider is missing, Zenity
uses standard labels.

Table 1 shows the different Zenity dia-
log box types. The parameters that Ze-

Zenity and KDialog let you integrate your scripts with the native KDE or

Gnome environment. BY KRISTIAN KISSLING

Adding graphic elements to your scripts with Zenity and KDialog

SHELL CLICK

01 zenity ‑‑scale ‑‑title "Slider" ‑‑text "Slide a little..." ‑‑min‑value=1

‑‑max‑value=10 ‑‑value=5

Listing 2: Generating Numbers with a Slider
01 #!/bin/sh

02 zenity ‑‑scale

Listing 1: Simple Zenity
Script

Figure 1: A slider lets users gener-

ate numbers graphically.

w
w

w
.sxc.h

u

Zenity and KDialogKnOw-HOw

52 ISSUE 99 FEBRuaRy 2009

nity uses to call them are on the left with
a picture of the dialog box next to it.

As you can see, the selection includes
input fields. Bash reads these fields
when you click OK; the ‑‑entry field is an
example of this. To pass a numeric value
to Bash, use the slider (‑‑scale). The ‑‑list
control lists information and supports
sorting if you click a field name.

A progress indicator is useful wher-
ever you need to monitor progress; for
example, you could use one to show the
progress of a search. But I’ll look at the
basics first.

To label a window, you generally want
to use the ‑‑title keyword. Listing 2
shows how to let the user select a value
between 1 (‑‑min‑value=1) and 10
(‑‑max‑value=10) and assign a default of
5 (‑‑value=5). This gives you a dialog
like that shown in Figure 1.

Of course, you can feed only a limited
number of parameters to a slider: man
zenity has a separate Scale Options sec-
tion outlining the options that work with

‑‑scale. A ‑‑warning field
only supports text defini-
tions and new lines, for ex-
ample. Some types need to
be combined with other
commands to be effective.
The command

ls | zenity U

‑‑list ‑‑column U

"Show Directory"

lists the files in a directory
and sorts them alphabeti-
cally when you click Show
Directory (Figure 2).

Although Zenity will
build interesting graphical
menus for you, it does not
take the task of designing
program logic off your hands. Therefore,
you need an If condition to tell the script
what to do when you click Yes or No. In
general, Zenity and KDialog define two
internal return values for dialog boxes: A
positive result (Yes) returns 0 and a neg-
ative result (No) returns 1. A third result
– such as Cancel from KDialog – would
return 2. You can create conditional
statements by querying these return val-
ues.

On Top of KDE
KDialog users can
follow a similar ap-
proach to create
graphical dialog
boxes. Table 2 shows
which commands
create which ele-
ments. KDialog has
a couple of addi-
tional dialogs that
Zenity does not
have. For example,
to have the user con-
firm a file deletion,
enter:

kdialog ‑‑yesno U

"Do you really want U

to remove this file?"

The question appears
in a dialog box with
Yes and No buttons.
If you want to label
the field, add a title
(Figure 3):

kdialog ‑‑title "Yes U

or No"

‑‑yesno "Do you U

really want to U

remove this file?"

In contrast to Zenity,
KDialog complains
if you just type

kdialog ‑‑yesno without adding text – the
program does not generate default la-
bels.

If you enter text in a field, it is typi-
cally displayed on the console, which is
the standard output device, but you also
can pipe the output into a file – for ex-
ample, file1.txt (Listing 3, line 1). Alter-
natively, you can pass the results to a
variable (Listing 3, lines 2 and 3).

In addition to the messages mentioned
here, the ‑‑dontagain switch makes sure
that KDialog does not continually repeat

01 �kdialog ‑‑passivepopup "That really wasn't necessary..." 5

02 �kdialog ‑‑getopenfilename . " *.mp3 | MP3‑Dateien"

Listing 4: Opening a Specific File Type

01 �kdialog ‑‑inputbox "Please enter any text here:" > file1.txt

02 �variable=$(kdialog ‑‑inputbox "Please enter more text here:")

03 �echo $variable

Listing 3: Passing the Results to a Variable

Figure 4: The --passivepopup option lets you display a short mes-

sage so that the user sees the pop-up without losing the current

focus.

Figure 3: KDialog will quickly

set up a Yes/​No dialog.

Figure 2: Click Show Directory

to list the files.

Know-HowZenity and KDialog

53ISSUE 99FEBRuary 2009

a question. This displays
a Do not show this
 message again checkbox
on top of the Yes/ No dia-
log.

kdialog ‑‑dontagain U

rememberfile:decision U

‑‑yesno "Do you really U

want to delete this U

file?"

The rememberfile:
decision entry makes
sure that the dialog really does remem-
ber your decision. KDialog creates a file
called rememberfile below ~/.kde/
share/config/ and stores your decision in
the decision variable as the following
test shows:

$ cat ~/.kde/share/ U

config/rememberfile

[Notification Messages]

decision=yes

In this case, the script would autore-
spond Yes whenever this question is
posed.

KDialog dialog boxes typically have a
couple more switches that I’ll look at. If
you get stuck, man kdialog and the over-

view in the KDialog manual [2] will help
you with the details.

The ‑‑passivepopup option lets you dis-
play a short message to users. It pops up
a bubble in a dialog and tells the user
something (Figure 4). A number follow-
ing the pop-up text specifies how long
you want the text to display (this is set
to five seconds in line 1 of Listing 4). A
/n sequence adds a line break to the dia-
log box text to keep it from spreading all
over the screen.

If you want to select a specific file on
disk, it makes sense to use the ‑‑getopen‑
filename option to do so. This returns an
absolute pathname, such as /home/user/
song.mp3. Another very similar parame-
ter, ‑‑getopenurl, returns a URL, as in
file:/home/user/song.mp3. For example,
you can use this approach to open FTP
addresses. Their counterparts that save
files are ‑‑getsavefilename and ‑‑get‑
saveurl.

--calendar

--list --text-info

--question

--scale

--file-selection

--entry

--error

--progress

--warning

--notification

--info

Table 1: Zenity Dialog Box Types

Figure 5: If you want the script to work on audio files only,

you should restrict the user’s selection options.

Zenity and KDialogKnOw-HOw

54 ISSUE 99 FEBRuaRy 2009

To open only specific file types – such
as MP3-formatted tracks – just add a de-
scriptor to the command (Listing 4, line
2). KDialog shows the MP3 files entry as
a Filter (see Figure 5); if you delete the
pipe and the entry, you see the file suffix
instead.

After ‑‑getopenfilename, you normally
pass in the path the dialog box opens –
in this example, it was the current work-
ing directory. If you replace this entry

with :label1, the file manager will start
where you left it last time; that is, it re-
members the last directory you used.

Conclusions
If you author scripts for other users, dia-
log boxes give them useful visual feed-
back – especially if they are newcomers.

Finally, a word of warning: Don’t be
surprised if you find yourself re-writing
working scripts and get so used to the

convenience that you don’t want to do
without the reassurance of visual feed-
back. ■

--getexistingdirectory

--inputbox

--msgbox

--getsavefilename

--getopenfilename

--radiolist

--checklist

--menu

--warningyesnocancel

--warningcontinuecancel

--yesno --yesnocancel

--error

--warningyesno

--progressbar

--combobox

--sorry

--passivepopup

--textbox

Table 2: KDialog Dialog Box Types

[1] Zenity manual: http:// library. gnome.
 org/ users/ zenity/ stable/

[2] KDialog manual: http:// techbase. kde.
 org/ index. php? title=Development/
 Tutorials/ Shell_Scripting_with_KDE_
Dialogs# Introduction_and_Scope

INFO

KnOw-HOwZenity and KDialog

55ISSUE 99FEBRuaRy 2009

