
Users routinely copy documents
to their laptops, edit the files
from the road, and save the

changes centrally when they get back to
the office.

Unfortunately, it is all too easy to lose
files, overwrite changes, or forget which
version is the most recent. Windows pro-
vides an offline file storage option to ad-
dress this problem, and several alterna-
tive tools are also available (see the
“Similar Approaches” box).

Now a new project brings the offline
storage option to Linux: OFS, the offline

filesystem [1]. (Because it began at the
Georg-Simon-Ohm University in Nurem-
berg, Germany, OFS also stands for Ohm
Filesystem.)

OFS
To start, simply select
the directories you
need, and then the
offline filesystem
copies the contents of
these directories to a
cache on your local
disk. Even if you
don’t have a connec-
tion to the server, you
will still appear to be
working on the net-
work filesystem. In
reality, you will be
working with the
copies in the cache.
Paths stay the same
whether or not you
have a connection to
the network.

When the connec-
tion becomes avail-
able again, the offline

filesystem automatically launches a rein-
tegration session to write the changes
out to the server.

OFS is not a network filesystem in the
true sense of the word. In fact, it is a

Tired of copying and recopying

files from your laptop to the office

file server? Maybe you need an

automated offline filesystem, such

as OFS.

By Carsten Kolassa, Frank

Gsellmann, Tobias Jähnel,

Peter Trommler

Staying in sync with a network filesystem

Connections

D
m

itry
 S

u
n

a
g
a
tov, Foto

lia

Offline FSKnow-How

56 ISSUE 99  FEBRuary 2009

Figure 1: The OFS offline filesystem relies on FUSE for kernel

interaction.

Task

Systemcall
Interface

Virtual Filesystem Switch

Ext 2 FAT Samba

Harddrive

Kernelspace

Userspace

OFS Daemon

Fuse

uses

<<uses>>

uses uses uses uses

uses

uses

uses

Ethernet

uses

Network
Subsytem/

Driver

Device Driver

uses uses

uses

layer between the network filesystems
(for example, NFS or Samba) and a user
view, which means that you can com-
bine OFS with any filesystem.

How It Works
OFS code runs completely in userspace
and relies on FUSE (Filesystem in User-
space [2]). FUSE provides an interface
the kernel uses to forward file access to
userspace programs.

The FUSE interface mainly consists of
a kernel module, fuse.ko, and the Lib-
fuse library, both of which are included
with any recent Linux distribution. The
kernel’s VFS (Virtual Filesystem Switch)
accepts the FUSE kernel module as a
filesystem. FUSE forwards calls to the
OFS daemon in userspace via the
/dev/fuse device file.

To receive data, OFS relies on Libfuse
and the C++ bindings by the Fusexx
project [3] (Figure 1). Each action that
affects a file or directory on an OFS file-
system triggers a function call though
FUSE to the OFS daemon.

In addition to the OFS daemon shown
in Figure 1, the OFS project also provides
a mount helper and a file browser plugin
(Figure 2). To communicate, the file
browser plugin, which acts as a user in-
terface to the OFS daemon, uses D-Bus
[4]. This design makes it fairly simple to
extend OFS by adding more file browser
plugins, no matter which desktop you
need to support.

The mount helper, mount.ofs, mounts
the remote filesystem, for example, a
Samba share, and launches the OFS dae-
mon. The OFS daemon resides in user-

space and accesses the remote filesys-
tem. As with any normal application,
OFS uses the standard filesystem API for
this access.

To allow this to happen, the mount
helper does not mount the remote file-
system at the location the admin speci-
fied in the call, but under /var/ofs/-
remote/URL Hash.

The original mount point is controlled
by FUSE. Thus, OFS is completely inde-
pendent of the remote filesystem and
will work with any implementation sup-
ported by the Linux kernel.

The OFS daemon’s internal structure
is service oriented, making it easily ex-
tensible. In the simplest case, the dae-
mon passes all requests on to the remote
filesystem itself. However, it is also re-
sponsible for caching and maintaining
all persistent data.

When a user enables caching – for the
whole filesystem, or for individual direc-
tories – OFS creates a copy of any file
that is opened in the cache. When a user
works with the file, the OFS daemon
writes the changes, both to the cache
copy and to the remote file on the server

Windows Offline Files: The motivation for
the OFS project was the desire to create a
Linux counterpart to Windows offline files.
Microsoft introduced the feature to its op-
erating systems in Windows 2000, and it is
integrated with the Synchronization Center
in Vista. Windows offline files makes files
stored on an SMB share available offline.
Users can access the share even if their
computer doesn’t have a connection to the
server. Once the share is available again,
Windows will synchronize automatically or
at the user’s request [5].

Coda: As early as the 1980s, a team at Car-
negie Mellon University (CMU) started to
create a network filesystem designed to
make lost network connections invisible to

users. Coda, which was intended as the
successor to the Andrew File System
(AFS), can bridge short-term network fail-
ures, letting users work without a network
connection. The Coda programmers devel-
oped some excellent ideas, although the
filesystem is not totally mature [6].

Intermezzo: Intermezzo, which is also
maintained by CMU, is similar Coda but
with a far simpler design. Whereas Coda
only accesses the cache if it does not have
a connection, Intermezzo always uses the
cache. The filesystem synchronizes the cli-
ent cache with the server content by peri-
odically polling the server or following a
server request. The Intermezzo filesystem
is no longer under active development; in

fact, it was dropped from Linux kernel ver-
sion 2.6, and it is not suitable for produc-
tion use in most cases.

Version management: Offline filesystems
cannot replace a full version management
system like Subversion [7]. Version man-
agement systems provide a more exten-
sive range of revision control features, but
they are more complex and not as conve-
nient as simple offline storage tools.

Synchronization Tools: Unison [8] and
other products synchronize the contents of
local and remote directories; however,
users have to handle synchronizing their
copies with the server content, even if they
have an active connection.

Similar Approaches

Know-HowOffline FS

57ISSUE 99FEBRuary 2009

Figure 2: An overview of the OFS environment. The Dolphin and Konqueror plugins use D-Bus

to communicate with the OFS daemon, which uses both the filesystem API and FUSE to talk

to the kernel.

Kernel

OFS Daemon

Fuse
Kernel Module

VFS CIFS

NFS

Fuse
Library

mount mount.ofs

mount.CIFS

User

mount.NFS

/dev/fuse
Device File

C++ Bindings
für Fuse

Filesystem-
API

Dolphin/
Konqueror Plugin

D-Bus
Interface

Program

if it is available. See Figure 3 for the indi-
vidual steps for opening, reading, and
writing a file.

Practical Applications
To create an OFS-managed mount point,
or – to put this a different way – to
mount a share via OFS, use the follow-
ing command:

mount ‑t ofs type://server/share U

/mountpoint

The command

mount ‑t ofs U

smb://fileserver.comp/data U

/network/data

mounts the SMB share data on the
server fileserver.comp in the local
/network/data directory. The mount.ofs
mount helper uses FUSE to let the OFS
daemon intercept calls to /network/data.
At the same time, the mount helper
breaks down the URL and executes an
additional mount command to mount
the remote directory:

mount ‑t smb U

//fileserver.comp/data U

/var/ofs/remote/URL_hash

Each OFS-managed mount point in-
cludes a state indicating whether or not
the share is available and directing ac-

cess to the cache or the share itself.
When the network cable is removed,
Linux uses D-Bus to trigger an event,
which OFS then queries before setting
the filesystem status to offline.

In the future, the developers would
like to integrate more features, such as a
timer to identify server problems or a
polling component to detect the current
online state.

Think Sync
OFS uses synchroni-
zation in two situa-
tions: to keep the
cache up to date
while the server con-
nection is up and to
reintegrate any local
changes with the
server when a lost
connection is re-
established.

Alternative tools,
such as Coda and In-
termezzo, provide
software on the server
side to let the server
report changes to all
relevant clients. OFS,
of the other hand, is a
client-only solution –
it is the user’s respon-
sibility to trigger the
cache update process
manually.

When updating the cache, OFS relies
on the files’ modification timestamps.
Then the OFS daemon compares the
timestamp of the original file in the
share to the copy in the cache. If the re-
mote file has changed, OFS copies it to
the local cache.

To synchronize, OFS must perform a
full search of the offline directory tree.
Because this process stresses the net-
work, the hard disk, and the CPU, the
developers decided to do without full au-
tomation based on polling.

When a program issues an open() sys-
tem call, the update process is triggered.
At that point, OFS checks to see whether
the file in its offline directory is up to
date; if not, it downloads the latest ver-
sion from the server. OFS uses the local
cache to answer read access requests,
whereas write requests modify both the
cache and the share (Figure 4). This ap-
proach guarantees both fast read access
and up-to-date files.

When the server connection is down,
OFS logs all write accesses handled by
the cache. Each entry in the logfile con-
tains both the path to the file and a pa-
rameter specifying the change. The pos-
sible values are: created, deleted, and
modified.

Once the server connection is restored,
OFS works its way through the logfile,

Offline FSKnow-How

58 ISSUE 99  FEBRuary 2009

Figure 4: When a file is opened (left), OFS updates the copy in

the local cache if possible. Read requests (top right) are served

directly from the cache to improve performance. Write requests

modify both the cache and (if possible) the original on the server

(bottom right).

Open Call Read Call

Write Call

yes

yes

no

no

open()

Remote file
available?

Remote file
newer?

read()

Read from
local file

write()

Remote file
available?

Write to local
and remote file

Write to local
file only

yes

no

Open local
and remote
file

Copy remote
file to cache

Lokale Datei
öffnen

Figure 3: When a program accesses a file, the kernel-side VFS detects that FUSE is responsi-

ble. The FUSE module passes the call to the OFS daemon and receives its response.

File access

FUSE queries
userspace
daemon

Call OFS
daemon FUSE
function

Data is
received

Pass requests
on to FUSE

Request is
processed

Data is
transferred

VFS function
is called

VFS function
returns

Data is
processed

FUSE ModuleProgramOFS Daemon

User space Linux Kernel

performing each of the steps on the
server side: creating new files, deleting
existing files, or uploading the cached
version to the server.

During reintegration, a file the user
has modified locally might have been
changed on the server, too. To avoid sim-
ply overwriting the file, OFS first checks
how current the remote file is. If the
modification time is later than the last
synchronization time, the remote file
must have been changed in the mean-
time. In this case, OFS launches its con-
flict-resolution tool.

In some cases – for example, if one
user has modified the local file while an-

other user has simply renamed the ver-
sion on the server – the conflict is easily
resolved. However, some conflicts are
impossible to resolve automatically, such
as cases in which two users modify the
file in different ways while it is offline.
In this situation, OFS leaves the decision
to the users. A diff mechanism analyzes
both versions of the file, and a preview
shows the results of the proposed con-
flict resolution. (The OFS configuration
decides which diff tool to use.) Text files
are typically fairly easy to merge, with
the exception of a situation in which
both sides have changed the same part
of the file. Because it is more difficult to

display and merge differences in binary
files, the only approach is to choose one
of the versions.

The KFilePlugin plugin for Dolphin
and Konqueror adds an OFS tab to the
Properties dialog field, which is dis-
played when you right-click a file or di-
rectory and select Properties. By select-
ing the OFS tab, users can add a direc-
tory to the local cache or write changes
out to the server. This GUI plugin is not
a required part of OFS. Machines with-
out a GUI can still use OFS at the com-
mand line.

Future
OFS is not a mature product, although
the current version is usable if you ac-
cept its limitations. The roadmap fea-
tures a number of extensions. The mod-
ular design supports the introduction of
more agent classes, for example, to pro-
vide more precise details on the avail-
ability of a remote filesystem. n

For the most part, OFS interacts with ap-
plications just like any other filesystem. Its
special features include a flag that speci-
fies whether a file should be available off-
line if the connection is lost. Many filesys-
tems, AFS for example, have their own
tools for setting these parameters. OFS,
however, removes the need for special
tools by relying on extended file attri-
butes, which the user can set and read
through standard Linux file utilities.

Extended file attributes make it possible to
add metadata to files (as long as the file-
system supports this). The kernel does not
handle the get and set commands itself
but passes them directly to the filesystem.
It is thus the filesystem’s responsibility to
process or save the attributes. FUSE sup-
ports extended file attributes and offers
callback functions for setting, deleting,
reading, and listing attributes.

OFS relies on this feature to implement its
own custom attributes, which serve only
to exchange information between the file-

system and the shell. OFS does not save
them and does not pass them on to the
underlying filesystem; you might say they
are virtual attributes. The current version
of OFS supports two attributes in the ofs
namespace:

•	 �ofs.offline indicates whether a file is
available offline. Setting this attribute
triggers the update process and adds
the tree to the list of directories avail-
able offline.

•	 �ofs.available indicates whether the file
is available right now, or whether the
cached version is in use. In other words,
it tells you whether the server connec-
tion is available. This attribute is read-
only.

In both cases, the only two states are
“set” (yes) and “not set” (no). setfattr ‑n
attribute_path sets the state, and getfattr
‑n attribute_path reads it. To delete the at-
tribute completely, you can use setfattr ‑x
attribute_path.

Attributes

In OFS, the local cache mirrors the share.
When the user chooses which directories
to access while on the road, OFS creates a
full mirror copy of only the required com-
ponents. Other offline filesystems either
copy the whole share or select the files
based on some form of babysitting algo-
rithm, for example, the most frequently
changed or the most recently used files.

Because the OFS daemon always creates
the whole path from the root of the share
to the directory for which the user needs
offline access, OFS can redirect access to
the cache directly in case of connection
loss, without the need to emulate missing
parent directories.

Internally, OFS supports three directory
trees: a local cache (Cache‑Dir), a remote
share directory (Remote‑Dir, where OFS
mounts the share), and the user’s working
directory (Working‑Dir). The complete
cache and the mount point for the remote
share are local directories created by OFS
itself.

Entries in the OFS daemon’s configuration
file decide where OFS creates the directo-
ries; the default location is /var/ofs. The di-
rectory name is a hash of the remote
share’s URL. This approach avoids con-
flicts and ensures that the admin can eas-
ily copy or move the internal directories.

Caching

Offline FSKnow-How

60 ISSUE 99  FEBRuary 2009

[1]	� OFS (Offline filesystem):
http://​offlinefs.​sourceforge.​net

[2]	� FUSE: http://​fuse.​sourceforge.​net

[3]	� Fusexx, C++–Bindings for FUSE:
http://​portal.​itauth.​com/​2007/​07/​07/​
c‑fuse‑binding

[4]	� D-Bus: http://​dbus.​freedesktop.​org

[5]	� Windows offline files : http://​
support.​microsoft.​com/​kb/​307853/

[6]	� Coda: http://​www.​coda.​cs.​cmu.​edu

[7]	� Subversion:
http://​subversion.​tigris.​org

[8]	�U nison: http://​www.​cis.​upenn.​edu/​
~bcpierce/​unison/

INFO

Peter Trommler is Professor of Theo-
retical Computer Science, Computer
Communications, and Information
Security at the Georg-Simon-Ohm
University in Nuremberg, Germany.
He has been working on Unix for 18
years and on Linux for 10 years.

Carsten Kolassa has worked in the
Linux community for many years, fo-
cusing on embedded topics, net-
works, and security.

Frank Gsellmann is currently develop-
ing the resyncronisation mechanism
of OFS project as his Master's thesis.
Tobias Jähnel laid the foundations for
the project for his thesis; he now
works for EB Automotive: www.​
elektrobit.​com

T
H

E
 A

U
T

H
O

R

