
he simplest virtualization scenar-

ios are very easy to manage. In

the real world, though, virtual-

ization does not always simplify system

administration. In fact, many of the most

powerful uses of virtualization result in

additional administrative tasks and chal-

lenges. For example, large data centers

use virtualization to consolidate several

servers onto the same physical hard-

ware, thereby minimizing space, cost,

and power requirements.

These virtual machines (VMs) can mi-

grate between servers to achieve higher

uptimes and flexible load balancing.

However, managing such a complex vir-

tual infrastructure is at least as challeng-

ing as administering the equivalent

number of separate server systems, and

it requires very different skills.

Many high-end commercial virtualiza-

tion products come with sophisticated

VM management features. If you are

wondering whether the free software

community offers an equivalent applica-

tion, the open source MLN VM adminis-

tration tool might be just what you need.

MLN, which stands for “Manage Large

Networks,” lets you build sophisticated,

dynamic, virtual infrastructures with the

use of freely available virtualization plat-

forms. The versatile MLN currently sup-

ports the widely used VMware Server [1]

and Xen [2] packages, as well as User-

Mode Linux [3].

For Xen, MLN also provides live mi-

gration of entire network topologies,

which is otherwise available in applica-

tions only at the highest end. MLN’s

simple command-line and config file in-

terfaces serve the needs of complex vir-

tualization scenarios, but it is easy

enough for administrators who are new

to virtualization.

The MLN environment helps you man-

age large numbers of virtual machines

through a simple command-line inter-

face. MLN has three main design goals:

s฀ 4HE฀USER฀SHOULD฀BE฀ABLE฀TO฀DESIGN฀AND฀
implement complex VM deployments.

s฀ 4HE฀PROCESS฀FROM฀DESIGN฀TO฀ACTUAL฀DE

ployment should be as efficient as pos-

sible.

The configuration language should be

extensible, so users can customize MLN

easily for their unique needs.

MLN is designed to work in concert

with other VM management tools. For

example, if you have a VMware Server,

you can use MLN for efficient building

and redeploying of complex virtual net-

works and also use VMware Server Con-

sole for starting and stopping individual

virtual machines.

Download MLN from SourceForge [4].

The installation process is simple and

similar to the procedure for other Linux

programs:

wget

http://mln.sourceforge.net/

files/mln-latest.tar.gz

tar xzfv mln-latest.tar.gz

This simple command-line tool helps you keep ahead of your virtual

infrastructure. BY KYRRE BEGNUM AND ÆLEEN FRISCH

MLN

22 ISSUE 98 JANUARY 2009

022-030_mln.indd 22 13.11.2008 17:57:08 Uhr

cd mln-latest

./mln setup

MLN organizes virtual machines into

units called projects. Projects are groups

of virtual machines and their associated

virtual networks. The simplest project

consists of a single virtual machine. A

more powerful approach is to group vir-

tual machines that belong together: all

virtual machines that are web servers,

an entire replica of a small business net-

work, all the test systems for a software

test suite.

Projects are defined in MLN configura-

tion files. The configuration file shown

in Listing 1 (ldaptest.mln) defines two

virtual machines connected by a virtual

LAN. Annotations in the file highlight

the most important configuration set-

tings.

Listing 1 starts with the global stanza,

wherein the name of the project is de-

fined. Next follows a declaration of a vir-

tual machine called ldapclient – a Xen

host with 128MB of memory built from

01 global {

(Settings affecting all VMs and

 switches in the file.)

02 project ldaptest Project name.

03 }

04

05 host ldapclient {

06 xen This is a Xen VM.

07 memory 128M Memory size for VM.

08 lvm Create logical volume

 for storing VM.

09 size 2GB Size of the VM.

10 template ubuntu-client.ext3

11 nameserver 10.0.0.15 Set the

 name server.

12 network eth0 { Config. virt.

 net.interface.

13 address dhcp Use DHCP for

 IP address.

14 switch LDAPlan Connect to

 virt. switch.

15 }

16 users { kyrre l47/Y.NtB9p7w }

 (Create user and set encoded

 password.)

17

18 host ldapserver {

19 xen Another Xen VM.

20 memory 256M

21 lvm

22 size 2GB

23 template ubuntu-ldap.ext3

 (Initial OS image.)

24 nameserver 10.0.0.15

25 network eth0 { This VM uses a

 static address.

26 address 10.0.0.2

27 netmask 255.255.255.0

28 gateway 10.0.0.1

29 switch LDAPlan Connect to

 virtual LAN.

30 }

31 }

32

33 switch LDAPlan { }

(Create virtual switch connecting

 the VMs.)

Listing 1: ldaptest.mln

MLN

022-030_mln.indd 23 13.11.2008 17:57:11 Uhr

the template ubuntu-client.ext3. The

host has one network interface config-

ured to use DHCP for its IP address. The

third stanza defines another Xen host,

ldapserver, with similar settings, al-

though it is given more memory. Note

that the second host uses a different

template as its initial operating system

image and has a static IP address. The

final stanza defines a virtual switch to

which both virtual machines are con-

nected; this switch allows them to com-

municate with one another.

Most of the settings are straightfor-

ward, but the template specifications

 deserve special mention. Templates are

pre-fabricated VM filesystems. Each time

you build a new virtual machine, you

specify a template to use as its base. The

virtual machine will be individualized

by MLN during the build process. Some

people like to use very generic templates

for all their virtual machines and cus-

tomize them later, whereas others create

very specialized templates, like a fully

functional LAMP server or a copy of a

typical employee desktop.

The definition for a VMware Server

virtual machine differs only slightly from

the host definition in Listing 1. The vm-

ware keyword is used in the VM host

definition stanzas instead of xen, and a

VMware format template is used instead

of a filesystem image. The switch defini-

tion stanza also requires the vmware

keyword.

Valid host and switch names are case

sensitive and can contain lowercase and

uppercase letters, numbers, and hy-

phens.

Once you have defined a project in a

configuration file, you can use the mln

command to build the virtual machines

and virtual network inside it. For exam-

ple, the following commands create the

virtual hosts and network defined in

Listing 1 and then start the hosts and

virtual network:

mln build -f ldaptest.mln

mln start -p ldaptest

The build subcommand instantiates the

entities in the specified project file, and

the start subcommand boots the virtual

machines and activates the virtual net-

work.

Typically, the build subcommand is

used only once – initially to create the

project – whereas the start subcommand

and its sibling stop are used to activate

and deactivate the project hosts and net-

work.

By including the -h option, you can

apply the command to a single host

within a project:

mln stop -p ldaptest -h

ldapserver

Table 1 summarizes the most important

subcommands related to project man-

agement.

Clearly, writing host stanzas for large

numbers of virtual machines would get

tedious. The MLN configuration lan-

guage allows you to define superclasses:

named groups of settings that can be

 applied to multiple hosts.

Listing 2 illustrates the use of a super-

class. The superclass, which is called

basic in Listing 2, provides a bundle of

settings that are then available for host

definitions. Listing 2 defines three hosts

based on the superclass. The third host

illustrates the technique of overriding a

setting from the superclass. Of course,

many more settings could be placed into

the superclass or individual host stanzas

as required. One project file can include

multiple superclasses, and the super-

classes can even be nested.

Substanzas, such as network interface

definitions, which appear both within

superclass and host definitions, are

merged. Directives that appear in the

host definition have precedence over

 directives within the superclass.

So far, all the examples have been lo-

cated on a single server. However, MLN

supports distributed projects in which

virtual machines are located on one or

more remote hosts. The host and switch

definitions in a distributed project re-

quire an additional service_host direc-

tive, which specifies the server location:

host rem-vm {

 vmware

 template rhel5.vmdk

 ...

 service_host bigvmbox

}

01 global { project italy }

02

03 superclass basic {

04 vmware

05 template rhel5.vmdk

06 memory 128M

07 network eth0 {

08 address dhcp

09 switch lan

10 }

11 service_host milano

12 }

13

14 host uno { superclass basic }

15 host due { superclass basic }

16 host tre {

17 superclass basic

18 memory 256MB

19 }

20

21 switch lan { vmware }

Listing 2: Working with a Superclass

Action Command

Build VM mln build -f project-config-file [-r]

Reconfigure VM (including live migration) mln upgrade -f modified-config-file

Start VM mln start -p project [-h host]

Stop VM mln stop -p project [-h host]

Query status of all/ specified projects mln status [-p project]

List defined projects mln list

Remove a project mln remove -p project

Register a template mln rt -t file-system-image-file

Backup an entire project mln export -p project -d location [-z]

Restore a saved project mln import -p project -d location

Table 1: Working with the mln Command

MLN

24 ISSUE 98 JANUARY 2009

022-030_mln.indd 24 13.11.2008 17:57:11 Uhr

Superclasses can include the service_host

directive as well (as shown in Listing 2).

For servers that will host virtual ma-

chines, the MLN daemon must be run-

ning. In addition, the MLN daemon’s

configuration file, /etc/mln/mln.conf,

must define the server to be referenced

in project files and must grant access to

remote systems from which projects will

be managed. For example, the MLN

 daemon configuration file on the target

computer for the rem-vm virtual ma-

chine would contain directives like the

following:

 service_host bigvmbox

 daemon_allow 192.168.10.*

In this case, the daemon_allow setting

permits access only from systems on the

local subnet.

The argument to service_host can be

either a resolvable hostname or an IP

 address.

With MLN, it is a very small step from

distributed projects to live VM migration

in Xen environments.

To move virtual machines from one

server to another, all you need do is

modify the service_host settings within

the project file to reflect the desired new

destination and then rebuild the project

with the mln upgrade command. For ex-

ample, the following commands modify

and rebuild the italy project shown in

Listing 2, resulting in the virtual

 machines migrating from the server de-

noted by bigvmbox to the one denoted

newvmbox:

vi italy.mln

Change bigvmbox to newvmbox

mln upgrade -f italy.mnl

Note that this command can run even

when the virtual machines within the

project are currently running.

01 host odysseus {

02 xen

03 lvm

04 lvm_vg volume-group-name

05 service_host scylla

06 ...

07 }

08

09 host ulysses {

10 xen

11 filepath /nfs-mount-point

12 service_host charybdis

13 ...

14 }

01 host odysseus {

02 xen

03 lvm

04 lvm_vg volume-group-name

05 service_host scylla

06 ...

07 }

08

09 host ulysses {

10 xen

11 filepath /nfs-mount-point

12 service_host charybdis

13 ...

14 }

Listing 3: MLN with a SAN

MLN

022-030_mln.indd 25 13.11.2008 17:57:11 Uhr

Live migration also requires a few

 preparatory steps:

s฀ !LL฀OF฀THE฀SERVERS฀MUST฀RUN฀THE฀-,.฀
daemon. Access control for the dae-

mon must grant access to the other

servers involved in the migration.

s฀ 4HE฀VIRTUAL฀MACHINES฀MUST฀USE฀SHARED฀
storage to hold images that will be ac-

cessible to all relevant servers. The

best solution is usually a storage area

network (SAN) controlled by the logi-

cal volume manager (LVM), but you

can also use a shared NFS directory

for testing, especially when perfor-

mance is not a consideration. The lo-

cation is specified in the host defini-

tions in the project (see Listing 3).

In addition, with a SAN, the /etc/mln/

mln.conf file on all relevant servers must

contain the san_path directive. The argu-

ment for san_path specifies the location

of the SAN, which is either the volume

group name (like lvm_vg within the host

definition) or the local mount point for

the SAN.

Xen must be configured to allow mi-

gration on all relevant servers via the fol-

lowing entries in the Xen daemon’s con-

figuration file /etc/xen/xend-config.sxp:

 (xend-address '')

 (xend-relocation-hosts-allow

'^localhost$ ^.

*\\.ahania\\.com$')

The argument in the second directive is

a single-quoted list of regular expres-

sions specifying allowed hosts. In this

case, we specify the local host and hosts

anywhere within the ahania.com do-

main.

Consider the case of an operating system

class taught to, say, 120 students. The

students are organized in groups of two

for lab work, with each group using a

network of one Linux and one Windows

virtual machine to solve the course exer-

cises. The Linux virtual machine will

have two network cards and share its

connection to the LAN with the Win-

dows virtual machine.

The challenge for the instructor is to

create 60 of those mini-networks

quickly, each with an individual public

IP address and password.

The main philosophy for this task is

“design once, deploy often.” All 60 mini-

networks must be as consistent as possi-

ble, and the system also must be easy to

reconfigure, so if you later decide that

the Windows virtual machines need

more memory, you can modify all of

them easily. Putting all of the virtual ma-

chines into a single project might seem

like an easy way to accomplish this, but

a single project would make it more dif-

ficult to manage one group’s virtual ma-

chines separately.

A better solution is to use one project

per student group. However, it will not

be necessary to write 60 complete proj-

ect definitions. The #include statement

lets you compress as much information

as possible, so each project file only con-

tains the information unique to that

project. For example, you can create 60

small project files and let them all point

to the same main configuration file (see

Listing 4).

The items beginning with a dollar sign

are variable definitions, which will be

used within the main configuration file.

Listing 5 shows the main file, oscourse.

mln. (Note that this file has no global

stanza.)

The hvm directive in the definition of

the virtual machine running Windows

XP indicates that it uses Xen full (hard-

ware) virtualization. The Linux virtual

machine uses Xen paravirtualization. As

such, networking configuration is inter-

nal to this virtual machine (as IP address

10.0.0.2), so it is not configured by MLN

and there is no network substanza. This

configuration file also introduces the

root_passwd keyword, as well as two

keywords that set up the VNC display.

With a shell or Perl script, you can

loop over the various project files with

the mln create, the mln update, or both

commands if necessary, as in when a

change occurs to a customized template

file used by the Linux virtual machine.

Also, you can run mln commands manu-

ally.

Virtualization is also an effective way

of using a cluster of physical machines.

A cluster can essentially act as a server

farm for virtualization; in fact, the stu-

dent networks described previously

could run on the various nodes in a clus-

ter. The physical cluster can serve as

physical hardware for one or more vir-

tual clusters. Listing 6 shows a project

file that automatically creates a virtual

cluster of 36 nodes.

This project uses the autoenum plugin

(included with MLN) to automatically

01 global {

02 $gnum = 03

03 $userpasswd = unique-value-1

04 $rpasswd = unique-value-2

05 $vncpasswd = unique-value-3

06 project = os$[gnum]

07 }

08

09 #include oscourse.mln

Listing 4: Use of the
#include Statement

01 superclass common {

02 xen

03 lvm

04 memory 256M

05 network eth0 {

06 switch lan

07 netmask 255.255.255.0

08 }

09 users {

10 osuser$[gnum] $userpasswd

11 }

12 root_passwd $rpasswd

13 }

14

15 switch lan { }

16

17 host ubuntu {

18 superclass common

19 template os_linux_1.ext3

20 memory 128M

21 network eth0 {

22 address 10.0.0.1

23 }

24 network eth1 {

25 address dhcp

26 }

27 }

28

29 host win {

30 superclass common

31 hvm

32 template winXP.template

33 vncpasswd $vncpasswd

34 vncdisplay 300

35 }

Listing 5: oscourse.min

MLN

26 ISSUE 98 JANUARY 2009

022-030_mln.indd 26 13.11.2008 17:57:12 Uhr

Anzeige
kommt
separat

022-030_mln.indd 27 13.11.2008 17:57:12 Uhr

generate virtual machines with succes-

sive IP addresses and service hosts taken

from the list specified in the plugin’s

 service_hosts substanza.

Listing 6 creates 36 hosts on the basis

of the settings in the cluster-node super-

class, and the list of service hosts comes

from an external file referenced with the

#include directive.

The superclass definition also intro-

duces two more configuration file entries

that specify the required amount of free

space within the filesystem in which the

VM image will be stored (another way of

specifying its size) and the default gate-

way (router) IP for a network interface.

The preceding example illustrated the

use of a plugin designed for a specific

configuration task: in this case, assign-

ing sequential IP addresses and service

hosts.

The MLN configuration language has

an open architecture that simplifies the

task of writing plugins. MLN plugins are

Perl routines that are invoked within the

global stanza of a project file.

Listing 7 shows two more examples of

plugins. One (apache) sets various con-

figuration parameters for the Apache

web server within a virtual machine. An-

other (sshkey) installs the specified SSH

key file(s) into the designated user ac-

count. This technique is very practical

because it allows you to build virtual

machines that can be automatically ac-

cessed from other systems, such as by a

monitoring tool like Nagios.

The apache plugin will cause MLN to

set the Apache document root location

and the maximum number of simultane-

ous connections (once again, the direc-

tives in the global stanza and the host

stanza are merged).

The sshkey plugin will copy the public

key from the local nagios user account to

the .ssh/authorized_keys file in the home

directory of the user nagios in the virtual

machine web14 (creating the file and di-

rectory as needed).

Within the main configuration file, /etc/

mln/mln.conf, you can set many MLN

defaults. The installed version of this file

contains extensive comments document-

ing the available entries. Some of the

most useful and important settings are

shown in Table 2.

Note that the -P, -T, and -F options to

the mln command, which override de-

01 global {

02 project bioinfo

03 autoenum { Plugin to auto assign

 IP and service host.

04 superclass cluster-node

05 numhosts 36 Number of VMs to

 create.

06 address auto Assign IP

 addresses ...

07 addresses_begin 150

(starting with this host number ...)

08 net 128.39.73.0 ...on this

 subnet.

09 service_hosts { Service hosts

 to use for

 VMs ...

10 #include /bio/servers.txt

 (...stored in an external file.)

11 }

12 }

13 $gateway_ip = 192.168.33.211

14 }

15

16 superclass cluster-node {

17 template ubuntu_mpi.ext3

18 memory 312M

19 free_space 1G

 (Required free space in the

 storage filesystem.)

20 network eth0 {

21 gateway $gateway_ip

 (Default gateway setting.)

22 }

23 }

Listing 6: Creating a Virtual Cluster
01 global {

02 project webserv

03 apache {

04 doc_root /var/www

05 }

06 sshkey {

07 nagios /home/nagios/.ssh/

pubkey.outgoing

08 }

09 }

10

11 host web14 {

12 ...

13 apache {

14 max_connections 300

15 }

16 }

Listing 7: Plugins

Directive Use Default

projects /path Project files directory (override with mln’s -P option) /opt/mln/projects/$USER

templates /path Template directory (override with mln’s -T option) /opt/mln/templates

default_template file Default VM template None

default_memory nnnM Default VM memory size 64MB

default_size Default VM filesystem size 250MB

service_host name-or-IP Define server as a location for VMs None

daemon_allow ip-address-pattern Specify remote access control None

daemon_listen_address ip Network interfaces on which to listen for remote requests Listen on all interfaces

daemon_status_query host Include host in mln daemon_status command output None

lvm_vg vg-name Volume group for VM volumes None

san_path vg-name SAN volume group None

 san_path /mount-point SAN local mount point None

files /path Location for files to be copied to VM with files directive /opt/mln/files/$USER
 (override with mln’s -F option)

Table 2: MLN Configuration File Entries

MLN

28 ISSUE 98 JANUARY 2009

022-030_mln.indd 28 13.11.2008 17:57:12 Uhr

Anzeige
kommt
separat

022-030_mln.indd 29 13.11.2008 17:57:12 Uhr

fault directory locations, appear before

the desired subcommand (for example,

mln -P /mln/projects start ldaptest).

The MLN daemon, mlnd, is started at

boot time via the file /etc/init.d/mlnd

(linked to the appropriate rcn.d direc-

tory).

Also, you can run this script manually

with the usual start, stop, and restart ar-

guments.

To start the daemon manually, use the

following command:

mln daemon -D /var/run/mln.pid

The following command will display the

status of the MLN daemon on all hosts

specified in the daemon_status_query

lines in /etc/mln/mln.conf:

mln daemon_status

When you set up MLN to manage vir-

tual machines and networks, it is a good

idea to use LVM for flexible VM storage,

including expansion capabilities.

Anticipate resource use before deploy-

ing virtual machines, and monitor it on

an ongoing basis with software like

Munin or Cacti.

To limit remote VM management

and live migration, use access control

and don’t forget security. Virtual ma-

chines are not inherently more secure

than physical systems, contrary to many

vendor claims. In fact, in the absence of

precautions, they can even be less secure

because they offer new forms of attack.

Apply the usual system hardening tech-

niques to virtual machines and, espe-

cially, to the physical servers that host

them.

Also, think about backups. Either you

can choose to back up virtual machines

in the usual manner, within your enter-

prise backup scheme, or back up virtual

machines at the virtual level.

Virtualization products are everywhere.

What makes MLN so different is its abil-

ity to work in a very wide range of de-

ployments. MLN works well for virtual-

ization beginners because it removes the

gritty details of VM configuration files,

and, at the same time, you can use MLN

to deploy far more complex scenarios

than most vendors offer. p

Under both Xen and various free and com-

mercial flavors of VMware, creating a vir-

tual machine starts with making an empty

virtual machine. On the first boot, an oper-

ating system is installed just as it would be

on physical hardware, often from the same

installation media, or, more recently, from

the corresponding CD/ DVD image files.

Once you have a virtual machine with an

installed virtual system, its image could be

copied to create new virtual machines, al-

though the copies might require customi-

zation.

MLN is designed for complex virtualization

tasks. As such, it does not install operating

systems from standard media or ISO im-

ages; rather, it relies on installed operating

system image files – what it calls templates

– as the basis for instantiating virtual

 machines (relying on the ability of VMware

and Xen to create fully installed virtual

 machines as well as empty ones).

A few of the options for creating MLN

 templates are as follows:

them as templates. Before copying, how-

ever, it is a good idea to boot the virtual

machine and make it as generic as possi-

ble to allow for different deployment

contexts and scenarios. This includes re-

moving local users and groups (because

MLN can configure these as required for

each virtual machine created from the

template); eliminating specific network

configurations; and removing device

names, /etc/fstab entries, and so on.

sites (e.g., jailtime. org). Note that such

images typically correspond to paravirtu-

alized virtual machines, meaning that the

included operating system knows that it

is running in a Xen virtual environment

and contains special features for efficient

execution. This also means these sys-

tems do not contain bootable kernels but

rather rely on the kernel and initial ram-

disk on the virtualization server for boot-

ing.

Server from Internet sites (e.g., virtualap-

pliances. net, jumpbox. com). These im-

ages are typically special-purpose virtual

machines ready to run a specific applica-

tion or fulfill a specific purpose. They are

normal VMware VM image files (usually

-flat.vmdk preallocated disk image files).

Note that you can convert VMware im-

ages for use with Xen with the qemu-img

convert command.

way to create templates for Xen para-

virtualized virtual machines from Debian,

Ubuntu, Fedora, and other Linux distri-

butions. See the xen-create-image

 command for easy creation and customi-

zation.

dd command, you can harvest

an image from an installed operating

system, copying the entire partition into

an image file.

Once you have a template, you can modify

it easily by mounting it in loopback mode,

as in the following examples.

For Xen images:

mount -o loop guest.img

/somewhere

and VMware images:

mount -o loop,offset=

32256 guest-flat.vmdk

/somewhere

If the image is a Linux operating system,

you can chroot /somewhere to access the

image. This allows you to use the VM oper-

ating system’s own tools to make modifica-

tions, something that is especially helpful

for ensuring proper functioning when you

operating system, you will have to use ex-

ternal tools to modify items within it.

Once prepared, templates must be regis-

tered with the MLN daemon before you

can use them to build virtual machines:

mln register_template -t

file-system-image-file

Also, you can use rt as an abbreviation for

the register_template subcommand.

Creating Templates for Virtual Machines

[1] VMware Server:

vmware. com/ products/ server

[2] Xen: www. xen. org

[3] User-Mode Linux:

user-mode-linux. sourceforge. net

[4] MLN at SourceForge:

mln. sourceforge. net

INFO

MLN

30 ISSUE 98 JANUARY 2009

022-030_mln.indd 30 13.11.2008 17:57:12 Uhr

