
ealextreme.com, a company

from Hong Kong, offers all kinds

of inexpensive goodies. Custom-

ers can pay with PayPal, and shipping is

free. Interested in a laser pointer for less

than two dollars or a SATA/ IDE adapter

for just eight dollars? If you don’t mind

waiting up to two weeks for delivery,

you’re guaranteed to find a bargain with

Dealextreme.

For quite a while I had my eye on the

CCD-based barcode scanner for US$ 42

dollars (see Figure 1) (one of Dealex-

treme’s most expensive products [2]) be-

fore I finally pressed the Buy button.

When the mailman finally delivered the

package, I could hardly wait to get

started. The obvious choice was to write

an application to scan the barcodes in

my extensive collection of technical liter-

ature and store the results in a database.

Depending on where the book comes

from, the barcodes are either printed in

UPC (Universal Product Number) or

EAN (European Article Number) format,

and Amazon.com offers a free web ser-

vice that gives you detailed product in-

formation if you submit either barcode.

This means that a Perl script can easily

identify the author and title of a book or

the artist for a CD that you scan. The

data returned by the service includes CD

and book cover images. Adding a graphi-

cal user interface to the application lets

me display the book cover or CD case

onscreen and in color after scanning.

The reader has a USB connector, and

Linux immediately identifies it as a sec-

ond keyboard. If you hold the sensor

over the barcode of a book, CD, or DVD

and press the button, the scanner

switches the red light on (Figure 2) and

enables the CCD sensor; then, the inter-

nal CPU starts to analyze the bars of dif-

ferent thicknesses to discover the en-

coded number.

The barcode scanner is very reliable; it

beeps when it’s done and sends the

numbers to the computer’s USB port,

just as if the user had typed them at the

keyboard and then pressed Return.

If the scanner fails to identify the bar-

code, which did not happen in my ex-

periments, the user can still type the

number in the input box of the applica-

tion discussed in this article – the effect

is the same.

The script, upcscan (Listing 1), uses a

graphical interface based on the Tk tool-

kit. The GUI’s text input box immedi-

ately grabs the keyboard focus when

launched. Once the barcode scanner has

identified a code, the numbers appear in

the input box. The scanner sends a re-

turn key code when it is done, and the

GUI responds with the callback function

scan_done(). The function sends the

barcode to the Amazon Web Services

(AWS) and, after a delay of about a sec-

ond, receives the title and author or art-

ist of the book, CD, or DVD plus a URL

Barcodes efficiently speed us through supermarket checkout lines, but the technology is also useful for totally

different applications. An inexpensive barcode scanner can help you organize your private library, CD, or DVD

collection. BY MICHAEL SCHILLI

Perl: Barcodes

74 ISSUE 97 DECEMBER 2008

074-078_perl.indd 74 16.10.2008 15:53:31 Uhr

that points to a JPEG image of the book

or CD cover.

Figure 3 shows the application shortly

after scanning the

barcode printed on

the back of a

JavaScript book. The

data fields are filled in

correctly, and the pro-

gram has received the

right book cover from

Amazon in return.

Figure 4 shows the re-

sults after scanning a

CD by Beach Boys vo-

calist Brian Wilson.

In both cases, the

script drops the re-

trieved data into a

local SQLite database,

which I can then

browse to my heart’s

desire and write applications around

(Figure 5).

Thanks to the Tk package from CPAN,

slick GUIs are no problem for Perl

scripts. Unfortunately, I had a problem

with the application I had in mind: Lon-

ger operations, such as the web requests,

caused the interface to freeze. Querying

Amazon with a barcode can take a cou-

ple of seconds, and the interface would

freeze in the meantime.

The POE module, also from CPAN,

gave me a workaround – it lets the GUI

run in an event-oriented userspace “ker-

nel.” However, don’t confuse this with

the Linux kernel; in POE, “kernel” is just

a fancy name for an event loop. It pro-

vides mechanisms for cooperative multi-

tasking.

The script does not handle

web requests synchronously

in this environment; instead,

it sends a request to the web

server and then immediately

hands control back to the POE

kernel and, therefore, the GUI

event loop. When the re-

sponse comes back from the

Internet, the kernel wakes up

the waiting task and passes in

the data.

The Net::Amazon CPAN

module handles communica-

tions with Amazon and sup-

ports a variety of requests to

the giant retailer’s web ser-

vice. Internally,

it does not use

the asynchronous POE

module to query the Ama-

zon database. Instead, it

uses the synchronous

LWP::UserAgent. You can

use the ua parameter to

tell the module to work

with a user agent that you

pass in to it.

CPAN has

LWP::UserAgent::POE, an

agent with an LWP inter-

face that respects the spe-

cial asynchronous needs

of the POE kernel. While

the module issues web re-

quests, and seemingly

waits synchronously for

the results, some black magic inside the

module allows the POE kernel to keep

on ticking, thus giving other tasks their

turn.

The upcscan program uses the CPAN

Rose::DB database wrapper to identify

the database schema and insert new re-

cords into the articles table (Figure 6).

Line 23 identifies the database file arti-

cles.dat in the current directory as an

SQLite database, and the subsequent Au-

toCommit and RaiseError options ensure

that new entries are written to the data-

base without an explicit commit com-

mand and that any error that occurs im-

mediately throws an exception.

The make_classes() method in line 27

imports the database objects into the

script code, and because

of this, I can simply say

Article->new() later on

to prepare a new entry in

the articles database

table.

The graphical interface is

running in the main win-

dow, $top, which line 29

accepts from the $poe_

main_window variable,

which is exported from

POE. The GUI’s event

loop is not left to its own

devices in the script but

needs to cooperates with

POE’s kernel.

Perl: Barcodes

75ISSUE 97DECEMBER 2008

074-078_perl.indd 75 16.10.2008 15:53:36 Uhr

If use Tk appears before use POE in the

code, POE knows that it has to prepare

an event loop for the Tk GUI; it initial-

izes the main window and creates a

pointer to it in $poe_main_window.

The configure() command in line 30

stores the UPC Reader title string in the

window header and sets the background

color for the GUI to #a2b2a3 (light olive

green).

At the top of the window, you can see

the entry widget $entry, which accepts

sequences of numbers from the scanner

and stores them in the global variable

$UPC_VAR. Farther down is a photo wid-

get for the book and CD covers; for orga-

nizational reasons, it is embedded in a

label widget. Four Label-type widgets

follow that store the title ($PRODUCT),

the author/ artist ($BYWHO), the

scanned UPC or EAN code ($UPC), and a

status message ($FOOTER).

The for loop in line 50ff. drops the

widgets, top down, into the main win-

dow and calls -fill => "x" and -expand

=> 1 to ensure that the labels fill the

horizontal space up to the border and

automatically scale when the main win-

dow is expanded.

The bind() command in line 56 plays

an important role. The entry widget ig-

nores the Return character sent by the

scanner because the input field is a sin-

gle-line field. The bind method binds the

Return key’s keyboard code to the scan_

done() function defined in line 68ff. to

Perl: Barcodes

76 ISSUE 97 DECEMBER 2008

 Listing 1: upcscan
001 #!/usr/local/bin/perl -w

002 ###

003 # upcscan - Scan/store UPC coded articles

004 # Mike Schilli, 2008 (m@perlmeister.com)

005 ###

006 use strict;

007 use Tk;

008 use Tk::JPEG;

009 use POE;

010 use LWP::UserAgent::POE;

011 use Net::Amazon;

012 use Net::Amazon::Request::UPC;

013 use MIME::Base64;

014 use Rose::DB::Object::Loader;

015 use Log::Log4perl qw(:easy);

016

 017 my @MODES = qw(books music dvd);

018

 019 my $UA = LWP::UserAgent::POE->new();

020

 021 my $loader = Rose::DB::Object::Loader->new(

022 db_dsn =>

023 "dbi:SQLite:dbname=articles.dat",

024 db_options => {

025 AutoCommit => 1, RaiseError => 1 },

026);

027 $loader->make_classes();

028

 029 my $top = $poe_main_window;

030 $top->configure(-title => "UPC Reader",

031 -background=> "#a2b2a3");

032 $top->geometry("200x300");

033

 034 my $FOOTER = $top->Label();

035 $FOOTER->configure(-text =>

036 "Scan next item");

037

 038 my $BYWHO = $top->Label();

039 my $UPC = $top->Label();

040 my $PHOTO = $top->Photo(-format => 'jpeg');

041 my $photolabel =

042 $top->Label(-image => $PHOTO);

043 my $entry = $top->Entry(

044 -textvariable => \my $UPC_VAR);

045

 046 my $PRODUCT = $top->Label();

047

 048 $entry->focus();

049

 050 for my $w ($entry, $photolabel, $PRODUCT,

051 $BYWHO, $UPC, $FOOTER) {

052 $w->pack(-side => 'top', -expand => 1,

053 -fill => "x");

054 }

055

 056 $entry->bind("<Return>", \&scan_done);

057

 058 my $session = POE::Session->create(

059 inline_states => {

060 _start => sub{

061 $poe_kernel->delay("_start", 60);

062 }

063 });

064

 065 POE::Kernel->run();

066

 067 ###

068 sub scan_done {

069 ###

070 $PHOTO->blank();

071 $PRODUCT->configure(-text => "");

072 $FOOTER->configure(-text =>

073 "Processing ...");

074 $BYWHO->configure(-text => "");

075 $UPC->configure(-text => $UPC_VAR);

076 resp_process(

077 amzn_fetch($UPC_VAR));

078 $UPC_VAR = "";

079 }

080

 081 ###

082 sub amzn_fetch {

083 ###

084 my($upc) = @_;

074-078_perl.indd 76 16.10.2008 15:53:36 Uhr

trigger processing of the code read in by

the scanner.

First, the photo object’s blank()

method is called to remove the previous

cover image. Then the title and author/

artist names are replaced with blank

strings. A "Processing ..." message ap-

pears in $FOOTER, and the request is

sent to Amazon by calling amzn_fetch().

To get ready for the next scan, line 78

immediately deletes the code read by the

scanner from the entry widget. The bar-

code for the current product is stored in

the $UPC widget.

After completing these preparations,

line 58 defines a POE session, and line

65 launches the POE kernel, which con-

trols the program from this point on

until it is terminated. The POE kernel ac-

cepts user input, mouse clicks, or key-

board/ scanner input and makes sure

that a time slot is assigned to each han-

dler triggered by an event. POE is very

strict with the sessions it controls. If they

do not have a task to complete, they are

eliminated. POE does not understand

that a Tk application might just be wait-

ing for user input. To prevent it from kill-

ing the GUI, lines 58 through 63 define a

session that jumps to the _start event

every 60 seconds.

Once the scanner has returned a UPC or

EAN code, the amzn_fetch() function in

line 82ff. creates an instance of a

Perl: Barcodes

77ISSUE 97DECEMBER 2008

Listing 1: upcscan
085

 086 my $resp;

087

 088 my $amzn = Net::Amazon->new(

089 token => 'XXXXXXXXXXXXXXXXXXXX',

090 ua => $UA,

091);

092

 093 for my $mode (@MODES) {

094

 095 my $req =

096 Net::Amazon::Request::UPC->new(

097 upc => $upc,

098 mode => $mode,

099);

100

 101 $resp = $amzn->request($req);

102

 103 if($resp->is_success()) {

104 return($resp, $mode, $upc);

105 last;

106 }

107

 108 WARN "Nothing found in mode '$mode'";

109 }

110 return $resp;

111 }

112

 113 ###

114 sub resp_process {

115 ###

116 my($resp, $mode, $upc) = @_;

117

 118 if($resp->is_error()) {

119 $PRODUCT->configure(

120 -text => "NOT FOUND");

121 return 0;

122 }

123

 124 my ($property) = $resp->properties();

125 my $imgurl = $property->ImageUrlMedium();

126 img_display($imgurl);

127

 128 my $a = Article->new();

129 $a->upc($upc);

130 $a->type($mode);

131 $a->title($property->Title());

132

 133 if($mode eq "books") {

134 $a->bywho($property->author());

135 } elsif($mode eq "music") {

136 $a->bywho($property->artist());

137 } else {

138 $a->bywho("");

139 }

140

 141 $BYWHO->configure(-text => $a->bywho());

142 $PRODUCT->configure(

143 -text => $a->title());

144

 145 if($a->load(speculative => 1)) {

146 $PRODUCT->configure(

147 -text => "ALREADY EXISTS");

148 } else {

149 $a->save();

150 }

151

 152 $FOOTER->configure(

153 -text => "Scan next item");

154 return 1;

155 }

156

 157 ###

158 sub img_display {

159 ###

160 my($imgurl) = @_;

161

 162 my $imgresp = $UA->get($imgurl);

163

 164 if($imgresp->is_success()) {

165 $PHOTO->configure(-data =>

166 encode_base64($imgresp->content()));

167 }

168 }

074-078_perl.indd 77 16.10.2008 15:53:36 Uhr

Net::Amazon object and passes in both

the developer token (you will need to

apply to Amazon if you do not have one

yet – see the “Installation” section

below), and the global special agent

LWP::UserAgent::POE, which not only

retrieves web requests, like its base class

LWP::UserAgent, but also collaborates

with POE.

A Net::Amazon::Request::UPC-type re-

quest object talks to the Amazon web

service that provides the UPC/ EAN

lookup facility. The request must state

up front whether it wants to search for

the UPC/ EAN code in the Books, Music,

or DVD sections.

Because the scanner does not know

whether it is scanning a book or a CD,

the for loop that begins in line 93 simply

tries all three supported sections and ter-

minates as soon as Amazon reports a

successful search. The response returned

here offers the is_success() method,

which tells you whether a matching

code has been found.

The amzn_fetch() function returns

three parameters: the response object

$resp, the section in which the match

was found (Books, Music, or DVD), and

the scanned UPC/ EAN code.

The resp_process() function defined in

line 114ff. grabs the results and uses it to

update the GUI fields. The ImageUrlMe-

dium() method for the retrieved article

in $property includes a URL for a me-

dium-sized JPEG image on Amazon’s

server depicting the product cover.

To allow the Tk toolkit’s photo widget to

read and display JPEG images, line 8

loads the Tk::JPEG module, which is also

part of the Tk distribution. The img_dis-

play() function defined in line 158ff. ex-

pects the URL for an image hosted by

Amazon.com and then asks the POE-

friendly user agent to retrieve it.

Because the Tk photo widget insists

on Base64-encoded data (at least for

JPEGs), the encode_base64() function

from the MIME::Base64 module converts

the JPEG data extracted via content()

into a format that the widget will handle.

After this, the photo widget’s configure()

method sets the -data option, which in

turn tells the widget to parse the data,

convert it to the internal Tk format, and

display the decoded image in the GUI.

Now back to the resp_process() function:

It not only displays the product data, but

also stores it in the database. To allow

this to happen, in line 128 the Rose::DB

wrapper creates a new Article type ob-

ject and sets the object’s upc, type, title,

and bywho fields, which all correspond

to the database table columns with the

same names.

The load() method with the specula-

tive attribute then attempts to find a

matching entry in the database. If the

search succeeds, the script sends an

"ALREADY EXISTS" message to the GUI

display to tell the operator that this prod-

uct has already been scanned. If load()

fails, save() in line 149 saves the newly

entered article in the database.

Before the script can use AWS, you must

apply for an Amazon developer token

and enter it in line 89. This process is

fast, and you can trigger it [3] by enter-

ing a valid email address to which the

token will be sent. Without a valid

token, the script will say NOT FOUND

every time. The database is created by

the SQLite client sqlite3 when the

schema file (Figure 6) is passed in to it:

sqlite3 articles.dat <schema.sql

The client then creates the articles.dat

database and an empty database table,

articles, containing the columns id, upc

(the UPC/ EAN code), type (Books,

Music, or DVD), title (the title of the

book or CD/ DVD), and bywho (the au-

thor or artist).

The UNIQUE command in the data-

base table’s SQL uses the article type

and UPC number as unique keys to

allow the Rose database wrapper to run

load() quickly and check to see whether

the product with a given UPC and type

has already been scanned.

All of the modules used here are avail-

able from CPAN and can be installed

with a CPAN shell. The article database

created by the script can be used in vari-

ous ways: as a buying aid (“Do I own

this book already?”), as a CD archive, or

– if you include location details (as in,

“Room 1, Shelf 4, Compartment 3”) –

as an online catalog for absent-minded

librarians. p

Michael Schilli works

as a software engi-

neer with Yahoo! in

Sunnyvale, Califor-

nia. He is the author

of Goto Perl 5 (Ger-

man) and Perl Power

(English), both published by Addison-

Wesley, and he can be contacted at

mschilli@perlmeister.com. Michael’s

homepage is at http:// perlmeister.

 com.

T
H

E
 A

U
T

H
O

R

[1] Listings for this article:

http:// www. linux-magazine. com/

 resources/ article_code

[2] Dealextreme:

http:// www. dealextreme. com/

 details. dx/ sku. 12559

[3] Amazon Web Services:

http:// amazon. com/ soap

INFO

Perl: Barcodes

78 ISSUE 97 DECEMBER 2008

074-078_perl.indd 78 16.10.2008 15:53:37 Uhr

