0304 ‘uibnyaid Aspiwg

KNOW-HOW

OpenOffice Automation

You don't have to be an expert to get started with OpenOffice’s Basic

programming interface. BY DMITRI POPOV

penOffice.org comes with its

own Basic-based programming

language. Although OOo Basic is
not the most difficult programming lan-
guage, it still requires some time and ef-
fort, especially if you are not a program-
mer. However, reading documentation
and fiddling with code might not be nec-
essary if you only need to automate a
specific task now and then. In this arti-
cle, I will provide a few pointers and
code snippets, so you can put OOo Basic
to some practical use without learning
the language from scratch.

Launching External Apps
The ability to launch external applica-
tions and pass data to them is one of the
most useful features of OpenOffice.org.
Using the Shell command, you can
launch virtually any application installed
on your machine. The command has the
following format: Shell (Path, Window-
style, Parameter). Path defines the path
of the program. Windowstyle defines the
window in which the program is started,

48 ISSUE9

and Parameter specifies the command-
line parameter. For example, the Shell
statement below opens the http://
wordnet.princeton.edu/perl/webwn URL
in the Firefox browser and brings it to
the foreground:

Shell ("firefox", 1, "http://wordnet.Z?

princeton.edu/perl/webwn")

If you want to open another URL in Fire-
fox, you must change it manually, which
is not practical. Fortunately, OOo Basic
provides a way to grab a text selection
from the currently opened document:

ThisDoc=ThisComponent

TextSelection=2

ThisDoc. getCurrentController()?2
.getSelection().getByIndex(0)2
.getString()

This way you can select a URL in the
text and use it with the Shell command:

Shell ("firefox", 1, TextSelection)

Another way to acquire a URL is to dis-
play an input box in which the user can
enter the URL. In this case, the code that
opens the URL in Firefox looks like this:

InputText=InputBox?
("Input field:", "Window title")
Shell ("firefox", 1, InputText)

Even with this very simple command,
you can create some useful macros, like
the one in Listing 1, which allows you
to post messages to Twitter directly from
within OpenOffice.org.

To post messages, the macro uses the
curl utility, which must be installed on
your machine. The utility uses the fol-
lowing command to send messages to
Twitter:

Listing 1: PostToTwitter Macro

01 Sub PostToTwitter()

02 InputText=InputBox("Your message: ",

"Post to Twitter")
03 SplitStr = Split(InputText, " ")

04 Tweet = Join(SplitStr, "%20")

NOVEMBER 2008

06 Shell("curl",

05 TwMessage=" -u username:password -d

status=" & "" & Tweet & "" &
" http://twitter.com/statuses/update.
xml"

1, TwMessage)

07 End Sub

curl -u username:password -d 2
status="Your tweet goes here." 2
http://twitter.com/statuses/?

update.xml

So the macro has to prompt the user to
enter a message (called a tweet in Twit-
ter parlance), which is then passed as an
argument to the curl command with the
use of the statement InputText = Input-
Box("Your message:", "Post to Twitter").

The next two lines in the macro de-
serve a closer look. The problem is that
the spaces in the message must be con-
verted into the URL format; otherwise,
each word in the message is posted as a
separate tweet.

To convert the message into a URL, all
spaces must be replaced with the %20
string, so "Your tweet goes here." be-
comes "Your% 20tweet % 20goes % 20
here." Split and Join string routines do
exactly that. The Split routing “chops”
the string into text segments using the
space and a separator, whereas the Join
routine “glues” the text segments to-
gether using the %20 string. Next, the
macro has to construct the curl com-
mand argument, which is done by con-
catenating the required command-line
parameters and the tweet (replace
username:password with your actual
Twitter user name and password):

TwMessage=" -u username:password -d 2
status=" & "" & Tweet & "" & 2
"http://twitter.com/statuses/?2

update.xml"

Finally, the macro uses the Shell com-
mand to launch the curl utility and post
the tweet. As you can see, even these
few simple commands are enough to
create macros and put them to good use.

Working with Documents

The macro in Listing 2 might look a bit
complicated, but it introduces a few use-
ful techniques that let you obtain the
name of the currently opened document
and its path, check the document’s sta-
tus, and save it in a specified location.
The macro can be divided into several
steps. First, the macro defines the
FileProperties(0) variable, which is later
used to specify file properties for a
backup copy of the current document.
The ThisDoc = ThisComponent statement
instructs the macro to use the current

OpenOffice Automation

document, and the following code loads
the Tools library:

If (Not GlobalScope.Z
BasicLibraries.isLibraryLoaded?
("Tools")) Then
GlobalScope.BasicLibraries.?
LoadLibrary("Tools")

End If

The Tools library contains routines that
allow the macro to obtain the directory
of the current document. But before the
macro does that, it has to check to see
whether the document is saved, (i.e.,
that it actually has a location). If it
doesn’t, the macro prompts the user to
save the document and then quits:

If ThisDoc.hasLocation=2
False Then

MsgBox ("You have to save 2
document first!", , 2
"Attention!") :End

End If

When saving a copy of the document,
the macro appends the current date and
time to the file name to make it easier
for the user to find the desired version
of the document. The macro uses the
CDateToISO and Format routines to ob-
tain the current date in ISO format (i.e.,
YYYY-MM-DD) and format the current
time as HH-MM-SS:

DateToday=CDateToISO(Date) & "_" 2
& Format(Hour(Now), "00") & 2

"-" & Format(Minute(Now), 2

"0o") & "-" & Format?
(Second(Now), "00")

KNOW-HOW

The macro obtains the document’s URL
and uses the DirectoryNameoutofPath
routine to get the document’s directory:

DocURL=ThisDoc.getURL()
DocDir=DirectoryNameoutofPathZ?
(DocURL, GetPathSeparator())

The Dir routine then uses the URL to
extract the name of the document:

FileName=Dir(DocURL, 0)

The macro constructs the path for the
backup copy of the file, consisting of the
path to the directory in which the origi-
nal document is stored and the filename
that includes the created date and time
stamp:

SaveFile=DocDir & GetPathSeparator() & 2
FileName & "_" & DateToday

The macro saves a backup copy of the

document at a specified location using

the Overwrite file property, which over-
writes any file with the same name:

FileProperties(0).Name="Overwrite"
FileProperties(0).Value=True
ThisDoc. storeToURLZ

(SaveFile, FileProperties())

You can modify the macro to save a
backup copy of the document on an FTP
server. Add a statement that prompts the
user to enter an FTP address (e.g., ftp://
user:password@192.168.1.7/backup/):

FTPServerPath=InputBox?
("Enter FTP path", "FTP address")

Listing 2: BackupDocument Macro

01 Sub BackupDocument ()

02 Dim FileProperties(0) As New com.sun.
star.beans.PropertyValue

03 ThisDoc=ThisComponent
o4

05 If (Not GlobalScope.BasicLibraries.
isLibraryLoaded("Tools")) Then

06 GlobalScope.BasicLibraries.
LoadLibrary("Tools")

07 End If
08
09 If ThisDoc.hasLocation=False Then

10 MsgBox ("You have to save document
first!", , "Attention!") :End

11 End If
12

NOVEMBER 2008

13 DateToday=CDateToISO(Date) & "_" &
Format (Hour(Now), "00") & "-" &
Format(Minute(Now), "OO") & "-" &

Format (Second(Now), "00")
14
15 DocURL=ThisDoc.getURL()

16 DocDir=DirectoryNameoutofPath(DocUR
L, GetPathSeparator())

17 FileName=Dir(DocURL, 0)

18 SaveFile=DocDir & GetPathSeparator()
& FileName & "_" & DateToday

19 FileProperties(0).Name="Overwrite"
20 FileProperties(0).Value=True

21 ThisDoc.storeToURL(SaveFile,
FileProperties())

22 End Sub

ISSUES6 49

KNOW-HOW

Then modify the SaveFile = DocDir &
GetPathSeparator() & FileName & "_" &
DateToday statement so it looks like this:

SaveFile=FTPServerPath & 2
FileName & "_" & DateToday

Then you can customize this macro as
necessary for your own environment.

Dialogs
The InputBox routine allows you to dis-
play simple input boxes, but OOo Basic
also lets you create proper dialog boxes
containing multiple input fields, drop-
down lists, buttons, and other GUI good-
ies. As an example of how to create a di-
alog box, consider the macro in Listing
3, which builds a tool that converts tem-
perature from Fahrenheit and Celsius.
The macro displays a dialog box con-
sisting of four elements: an input box, in
which the user enters the desired value;
a listbox containing conversion direc-
tions (i.e., “Celsius - > Fahrenheit” and
“Fahrenheit - > Celsius”); another input

OpenOffice Automation

field that displays the result of the con-
version; and a button that performs the
conversion and closes the dialog.

Before you start coding the macro, you
must create the dialog. To do so, choose
Tools | Macros | Organize Dialogs, and
click the New button. Give the dialog a
descriptive name (e.g., SimpleConverter-
Dialog) and press the OK button. Use the
available tools in the Toolbox bar to add
input and result fields (must be numeric
fields), a listbox, and a button. Use the
Properties window to define properties
for each element. For example, you have
to set the button’s type to OK. To do this,
select the button and choose OK from
the Button Type drop-down list in the
Properties window. Also, you have to
add the “Celsius - > Fahrenheit” and
“Fahrenheit - > Celsius” entries to the
listbox, which you can do by selecting
the listbox field and adding the entries
in the List Entries field of the Properties
window. Using the Name field in the
Properties window, you can give each
element a name to make it easier to

identify. For example, you might want to
name the input field InputField and the
result field ResultField.

Once the dialog is ready, you can start
coding the macro. The macro first initial-
izes the dialog with the following lines:

exitOK=com.sun.star.ui.dialogs.?
ExecutableDialogResults.OK
Library=DialogLibraries.?
GetByName ("GUI")
TheDialog=Library.GetByNameZ?

("SimpleConverterDialog")

This code assumes that the Simplecon-
verterDialog dialog is stored in the GUI
library. Next, the macro has to initialize
the dialog fields:

DialogFieldl=2
Dialog.getControl("InputField")
DialogField2=2
Dialog.getControl("ListBox")
DialogField2.SelectItemPos(0, True)
DialogField3=2
Dialog.getControl("ResultField")

Listing 3: TemperatureConverter Macro

01 Sub TemperatureConverter()
02

03 exitOK=com.sun.star.ui.dialogs.
ExecutableDialogResults.OK

04 Library=DialogLibraries.
GetByName ("GUI")

05 TheDialog=Library.GetByName("SimpleCo
nverterDialog")

06

07 DialogFieldl=Dialog.
getControl ("InputField")

08 DialogField2=Dialog.
getControl("ListBox")

09 DialogField2.SelectItemPos(0, True)

10 DialogField3=Dialog.
getControl("ResultField")

11

12 Dialog.execute()

13

14 InputValue=DialogFieldl.value

15

16 Select Case DialogField2.SelectedItem

17

18 Case "Fahrenheit -> Celsius"

19 ConvertedValue=(InputValue-32)*5/9

20 DialogField3=Dialog.
getControl("ResultField").
setValue(ConvertedValue)

21 Button=Dialog.
getControl ("CommandButton")

22 Button.Label = "Close"

5O ISSUE9%

23 Dialog.execute()

o4

25 Case "Celsius -> Fahrenheit"

26 ConvertedValue=InputValue*9/5+32

27 DialogField3=Dialog.
getControl("ResultField").
setValue(ConvertedValue)

28 Button=Dialog.
getControl("CommandButton")

29 Button.Label = "Close"

30 Dialog.execute()

31

32 End Select

33 End Sub

01 Sub TemperatureConverter()
02

03 exitOK=com.sun.star.ui.dialogs.
ExecutableDialogResults.OK

04 Library=DialogLibraries.
GetByName ("GUI")

0

Ul

TheDialog=Library.GetByName("SimpleCo
nverterDialog")

06

07 DialogFieldl=Dialog.
getControl ("InputField")

08 DialogField2=Dialog.
getControl("ListBox")

09 DialogField2.SelectItemPos(0, True)

10 DialogField3=Dialog.
getControl("ResultField")

11

NOVEMBER 2008

12 Dialog.execute()

13

14 InputValue=DialogFieldl.value

15

16 Select Case DialogField2.SelectedItem
17

18 Case "Fahrenheit -> Celsius"

19 ConvertedValue=(InputValue-32)%*5/9

20 DialogField3=Dialog.
getControl ("ResultField").
setValue(ConvertedValue)

21 Button=Dialog.
getControl("CommandButton")

22 Button.Label = "Close"

23 Dialog.execute()

24

25 Case "Celsius -> Fahrenheit"

26 ConvertedValue=InputValue*9/5+32

27 DialogField3=Dialog.
getControl ("ResultField").
setValue(ConvertedValue)

28 Button=Dialog.
getControl ("CommandButton")

29 Button.Label = "Close"
30 Dialog.execute()

31

32 End Select

33 End Sub

The macro then executes the dialog
using the Dialog.execute command and
assigns the value of the InputField to the
InputValue variable:

InputValue=DialogFieldl.value

The Select Case command redirects the
macro to the appropriate conversion for-
mula, depending on what entry the user
selected in the listbox. For example, if
the user has selected “Fahrenheit - >
Celsius”, the macro runs the following:

ConvertedValue=(InputValue-32)%*5/9

The result of the conversion is then in-
serted into the result field:

DialogField3=Dialog.getControl?
("ResultField").setValue?

(Convertedvalue)

Finally, the macro changes the label of
the button to Close, and when the user
presses the button, the dialog closes and
the macro stops:

Button=Dialog.getControl?
("CommandButton")
Button.Label = "Close"

Dialog.execute()

The converter macro can be modified
easily to perform other types of conver-
sion. All you have to do is specify new

OpenOffice Automation

entries in the listbox and add a new Case
code block with the appropriate conver-
sion formula to the macro.

000 Basic contains tools that let you
connect to a database and manipulate
the data in it. The macro in Listing 4
demonstrates how to establish a connec-
tion to a local database and also shows
how to create a query and display the re-
sults in a dialog window. ShowWordlist
is a rather simple macro that connects to
a database called TinyDB. It then finds
all records in the Words column in the
wordlist table and populates a listbox in
the Wordlist dialog with the results. Be-
fore you can establish a connection to
the database, register it as a data source
in OpenOffice. To do this, choose Tools |
Options. Select OpenOffice.org Base | Da-
tabases and press the New button. Select
the TinyDB.odb database and give the
new connection the name TinyDB. Press
OK | OK, and you are done. Establishing
a connection to the database using OOo
Basic requires only three lines of code:

DBContext=createUnoService?
("com.sun.star.sdb. 2
DatabaseContext")
DataSource=2
DBContext.getByName("TinyDB")
Database=2

DataSource.GetConnection ("","")

Because OpenOffice.org Base uses the
SQL language to manipulate database

Listing 4: ShowWordlist Macro

01 Sub ShowWordlist()
02

03 DBContext=createUnoService("com.sun.
star.sdb.DatabaseContext")

04 DataSource=DBContext.
getByName ("TinyDB")

05 Database=DataSource.GetConnection
(l!ll llll)
s
06

07 SQLResult=createUnoService("com.sun.
star.sdb.RowSet")

08 SQLQuery="SELECT ""Words"" FROM
Wiordlist! "

09 SQLResult.activeConnection=Database
10 SQLResult.Command=SQLQuery
1

[

SQLResult.execute
12

13 exitOK=com.sun.star.ui.dialogs.
ExecutableDialogResults.OK

14 Library=DialogLibraries.
GetByName ("Wordlist")

15 TheDialog=Library.
GetByName ("WordlistDialog")

16

17 DialogField=Dialog.
GetControl ("ListBox")

18

19 While SQLResult.next

20 ListBoxItem=SQLResult.getString(1l)
2

part

DialogField.additem(ListBoxItem,
DialogField.ItemCount)

22 Wend
23
24 If Dialog.Execute=exitOK Then

25 CurrentItemName=DialogField.
SelectedItem

26 End If

27

28 Database.close

29 Database.dispose()
30 End Sub

NOVEMBER 2008

KNOW-HOW

data, creating a query that retrieves all
the records in the wordlist table is a mat-
ter of using the SELECT FROM SQL com-
mand. To retrieve records from the data-
base using the specified SQL query, the
macro uses the RowSet service, which
the macro must first initiate:

SQLResult=createUnoService?
("com.sun.star.sdb.RowSet")
SQLQuery="SELECT ""Words"" 2
FROM ""wordlist"""

The macro then executes the SQL query
using the following code:

SQLResult.activeConnection=22
Database
SQLResult.Command=SQLQuery
SQLResult.execute

By now, you know how to initiate a dia-
log box, so the only part that requires a
closer look is the following code block:

While SQLResult.next
ListBoxItem=SQLResult.getString(1l)
DialogField.additem?

(ListBoxItem, DialogField.Z
ItemCount)

Wend

To populate the listbox, the macro uses
the While... Wend loop, which picks a re-
cord (SQLResult.next), extracts the string
from the first column -

(ListBoxItem = SQLResult.getString(1)),
and inserts it as a list box item - (Dialog-
Field.additem (ListBoxItem, DialogField.
ItemCount)). Once the macro is done, it
closes the database connection:

Database.close

Database.dispose()

The OpenOffice.org Extension Reposi-
tory contains useful extensions, many of
which are released under open source li-
censes, so you can use the code in your
own creations. For example, you will
find some of the techniques and code
described in this article in the Writer’s
Tools extension [1], created by yours
truly. Happy programming! B

[1]1 Writer’s Tools:
writertools.googlecode.com

ISSUE96 51

