
BackTrack and Sleuth Kit 24

Recovering Deleted Files 30

Investigating Windows Systems . 34

OCFA ... 40

COVER STORY

rime scene: the server room…

The thief doesn’t need a key card

or the protection of darkness –

an intruder can use the Internet to come

and go. But despite the secret entrance,

the attacker still leaves behind some tell-

tale traces. Finding and interpreting this

evidence is the top priority of criminal

investigators.

This month’s cover story explores the

world of computer forensics. We’ll show

you some tools the experts use to find

clues, recover deleted files, and root out

hidden evidence. We start with a study

of the open source Sleuth Kit forensics

toolkit. We also look at Foremost and

Scalpel – a pair of tools for finding and

restoring deleted files. We show you how

to examine Windows disks with Linux

tools, and we end with a look at the

Open Computer Forensics Architecture,

a freely available collection of forensics

tools and libraries developed for the

Dutch police.

But if you’re not really going to trial

and you just want to catch the intruder

on your system, you might not want to

go to all the trouble of launching a full

forensics investigation. The following

sections describe some tips for finding

intruders on the system using standard

Linux utilities.

One of the first questions a forensics in-

vestigator must ask is whether the inves-

tigation should be performed openly –

which means that it will be visible to the

attacker, too – or the attacker should be

kept unaware of the investigation.

A computer under forensic investiga-

tion is very similar to a particle in quan-

tum mechanics: just looking at it

changes the state.

An attacker might see a

ps command, and run-

ning find against the

hard disk typically

overwrites valu-

able atime re-

cords on the

filesystem, removing evidence of a user’s

last access.

Despite the possible complications of

working in the open, the need to get to

the bottom of illicit activities is some-

times more important than taking elabo-

rate steps to avoid notice.

Also, keep in mind that most attacks

are launched through automated scripts

and programs, thus, it is unusual to

catch an attacker red-handed at the con-

sole. The following tips are primarily for

cases in which you don’t really care

about concealing your activities or keep-

ing a paper trail.

To avoid overlooking details, a system-

atic approach is use-

ful. The idea of

following a

You don’t need expensive proprietary tools to practice the craft of computer forensics.

 BY NILS MAGNUS, ACHIM LEITNER, AND JOE CASAD

Tracing Intruders Intro

21ISSUE 93AUGUST 2008

Tracing Intruders Intro

22 ISSUE 93 AUGUST 2008

hot trail is often very seductive, but if it

takes you to a dead end, you will be dis-

appointed.

For example, if you investigate a list of

processes using the command

ps gauxwww

you should store and work through the

full list. The command shows all of the

active processes and their command-line

arguments, including full options.

Of course, if your system has been

compromised, it is always possible an

intruder has installed trojaned versions

of system utilities, such as ps, to conceal

the break-in.

A small shell script does the same job

by reading the /proc data (see Listing 1).

Individual extensions are easily added

to a script like this and can be particu-

larly useful if you can’t trust ps.

For a good sanity check, you need to

crosscheck the results using a tool simi-

lar to the popular pstree. Forensic inves-

tigators will also remember that pro-

grams can change argv[], their argument

list, programmatically (see Listing 2).

A simple trick like searching for pro-

cesses is powerless against a kernel root-

kit. Rootkits modify the kernel to prevent

it from delivering information about cer-

tain processes to the /proc filesystem or

other information mechanisms.

On the other hand, it is very surprising

how little trouble some attackers take to

cover their tracks, so it might be worth

trying.

Besides processes, network connections

can also reveal clues, such as the attack

vector and the address the attacker used

to connect to the system.

Issuing netstat --ip -pan on Linux

shows you all the local IP sockets, their

protocols (TCP or UDP), and possibly

the communication partners for con-

nected sockets – unless the command

or the kernel happen to have been ma-

nipulated.

Setting the -n option in netstat pre-

vents DNS from resolving IP addresses

and giving you the matching hostnames.

This is a good idea because it avoids un-

necessary and suspicious network traffic

to the name server.

If necessary, you can always resolve

the IP addresses later.

The whois and traceroute commands

display more information about IP ad-

dresses. whois queries one of several

 Internet databases to reveal the registra-

tion data for the network scope.

Typically, these details are very trust-

worthy and difficult for attackers to

spoof without the cooperation of an

 Internet service provider.

One final thing that forensic investiga-

tors should not forget is that the origin

of a TCP or UDP connection does not

necessarily match the attacker’s loca-

tion. Some attackers use hijacked sys-

tems as a starting point for their work.

If the connection originates with a

system that is very close to your own

network, you should be extremely cau-

tious. A short list of hops in the output

from tcpdump target-address will tell you

more. If you can rule out a regular user,

you have fairly convincing evidence that

01 /*

02 Build as follows

03 gcc -o changecommand changecommand.c

04 Waits for three seconds, then changeas its

05 command line, waits another three seconds

06 and terminates. The specified commands

07 are not executed, but they do frighten

08 the administrator running the ps command.

09

 10 */

11

 12 void overwrite(char *arg, char *new) {

13 char w;

14

 15 while (*arg)

16 {

17 if (*new)

18 w = *new++;

19 else

20 w = 0x00;

21 *arg++ = w;

22 }

23 }

24

 25 int main(int argc, char **argv)

26 {

27 char a0[] = "/bin/rm";

28 char a1[] = "-fr";

29 char a2[] = "*";

30

 31 usleep(3000000);

32

 33 overwrite(argv[0], a0);

34 overwrite(argv[1], a1);

35 overwrite(argv[2], a2);

36

 37 usleep(3000000);

38

 39 return 0;

40 }

Listing 2: changecommand.c

01 #!/bin/sh

02

 03 cd /proc

04 for p in [0-9]*

05 do

06 proc=$(cat $p/cmdline)

07 user=$(ls -ld $p | cut

-d\ -f3)

08

 09 echo "$user $p $proc"

10 done

Listing 1: DIYS
Replacement for ps

Tracing Intruders Intro

23ISSUE 93AUGUST 2008

an attacker has made inroads into your

network. An attacker who is close is

much more dangerous than one who

is far away. (Sniffing passwords off the

same subnet is much easier than off

the Internet.)

If the forensics expert has discovered an

unknown process or program running

on the system, the next question is:

“What does the malware actually do?”

Is it just a jumping-off point for more

attacks? If so, an unknown process will

probably have created an entry in the

socket list.

Does it sniff data off the network? If

so, look for a network interface in pro-

miscuous mode.

Typically, this creates an audit entry in

the kernel ring buffer, and you can run

dmesg to find out:

device eth0 entered

promiscuous mode

audit(1408381411.504:2):

dev=eth0 prom=256

old_prom=0 auid=4267295

device eth0 left

promiscuous mode

audit(1408381413.144:3):

dev=eth0 prom=0

old_prom=256 auid=4297295

What are you supposed to do if you see

an active process but don’t know what it

does? To start, it makes sense to start by

backing up the process itself. To locate

the executable, type ps gauxwww or

check /proc/PID/cmdline.

What are you supposed to do if an at-

tacker has launched a tool, immediately

deleted it, and overwritten the disk sec-

tors? While the program is running,

there is hope – the kernel keeps a virtual

symlink to the executable in /proc/PID/

exe, even if the attacker has deleted it

from the filesystem. If the response team

saves this file somewhere safe, analysis

is often possible at a later stage.

One simple but effective approach is to

take a closer look at the binary itself.

The strings -a binary command searches

a file for printable characters. If the mal-

ware connects to an FTP or web server

that requires a password, you might be

able to find the password in the program

code. But you will need a modicum of

intuition to distinguish digital bread

crumbs from binary trash.

If you are considering running binutils

tools – for example, to extract the sym-

bol table (with <nm), or even disassem-

ble the machine code (objdump might

help) – your mileage will vary. Usually,

this technique is a last resort.

The simple strategies we've described

might help you catch a thief in the act,

but if the intruder is a seasoned profes-

sional, or if you need to worry about

maintaining a formal, documented pro-

cess for collecting evidence, you’ll need

something more.

Read on for more about the tools and

techniques of computer forensics.

