
henever you or an application

launch a program, the operat-

ing system starts one or multi-

ple processes. These processes can enter

various states: They can be processed,

stopped, restarted, and – under normal

circumstances – stopped again. Linux

has something similar to access controls

for processes: Only the user that started

a process can stop, restart, or terminate

the process.

The only exception to this rule is the

root user, who can control any process

on a system. On top of this are processes

that run on system user accounts, such

as nobody or lp – again, only root has

full access to them. In this issue, I will

be looking at tools that help you find out

more about, and control, processes.

Processes are never isolated and are al-

ways in good company. In fact, they are

in a hierarchical structure, with process

number 1, init, at the top. init is the first

process that Linux launches after boot-

ing. All other processes share this com-

mon “ancestor” – init starts the operat-

ing system’s basic programs. pstree

shows the relationship between “parent”

and “child” processes. This tree struc-

ture shows you at a glance who is de-

scended from whom (Figure 1).

The tool gives you more detailed output

if you set the -a flag. This tells pstree to

show you, in addition, the parameters

with which the programs are running.

If you use a terminal that supports

 different fonts and bold type, such as

Gnome Terminal or KDE’s Konsole, you

might also want to try the -h parameter.

This tells pstree to highlight its own pro-

cess and its ancestors.

If you would like to use this practical

feature for other processes, use -H with

the process ID, and pstree will highlight

the specified process and its family tree.

Setting the -p option tells pstree to out-

put the process ID (PID), and -u gives

you the user.

All of these parameters can be com-

bined – for example, pstree -apu.

The ps command gives you a list of the

processes currently running on your sys-

tem. If you do not specify any command-

line parameters, the tool will restrict the

list to the current shell. If you are inter-

ested in all of your processes, call ps

with the x option (Listing 1).

The tabular output in the shell tells

you the following characteristics:

s฀ PID: The process identifier, a unique

number that you can use to reference

a process individually.

s฀ TTY: The terminal or console on

which the process was started. A

question mark indicates that the pro-

cess is not running on a terminal.

s฀ STAT: The process status. The states

can be S (sleeping), R (running),

D (dead, the process cannot be re-

started), or Z (zombie, a process that

has terminated without correctly

 returning its return status).

s฀ TIME: The computational time used.

s฀ COMMAND: The full command with

all of its command-line options.

The ps command offers a number of ad-

ditional options for adding more infor-

mation to the output. For example, u

What is happening on your Linux machine? Various shell commands

give you details about system processes and help you control them.

BY HEIKE JURZIK

Command Line: Process Control

89ISSUE 93AUGUST 2008

shows the process owner and CPU cycles

or memory percentage, and a gives you

a list of all processes for all users. The l

option is also practical – this lengthy

output gives you additional information

on the PPID (parent process identifier)

and on the UID (user identification) of

the user who launched the process.

To display what can be fairly lengthy

command-line parameters in the COM-

MAND column, you might want to set

w for wider output, and you can use the

option multiple times. As shown in Fig-

ure 2, you can combine these parameters

as needed.

In some cases, a program you launch in

the shell might run for an extended pe-

riod of time. Graphical programs that

you launch in a terminal window block

the shell, preventing any command

input. In cases like this, you can run out

and grab a coffee or open a second con-

sole and carry on working. As an alter-

native, you can move the process into

the background when you start it, or at

a later time.

To move the process into the back-

ground when you launch it, just add the

ampersand character (&) to the com-

mand line (Listing 2, line 1). The Xpdf

window launches, the shell tells you the

process ID (5622), and bash can then

 accept more commands.

Besides the process ID, you can also

see the job ID in square brackets. The

job ID is allocated as a consecutive num-

ber by the shell. If you launch another

program in the same session, you will

see that bash assigns job ID 2 (Listing 2,

line 3). The jobs command tells you

which jobs are running in the current

shell (Listing 2, line 6).

After a program has completed its

task, the shell displays the job ID along

with a status message (Done) and the

program name:

[3]+ Done

xpdf article.pdf

The job ID is also useful if you need to

move a background process into the

foreground, or vice versa.

If you launch a program without ap-

pending an ampersand, you can press

the keyboard shortcut Ctrl+Z to send it

to sleep. The shell confirms this action

as follows:

[1]+ Stopped

xpdf

If you now type bg (background), the

process will continue to run in the back-

ground. The job ID is useful if you have

stopped several processes in a shell. The

bg %3 command tells the process with

the job ID 3 that it should start working

again. In a similar way, the fg (fore-

ground) program moves jobs into the

foreground. Again, this program might

need more details in the form of a job

ID following a percent character.

The commands I just looked at move

processes to the background and option-

ally let them go on running. If you close

the shell in which you launched the pro-

gram, this also terminates all the active

processes.

The nohup program gives you a work-

around by protecting the process against

the shell’s HUP signal (see the next sec-

tion), thus allowing it to continue run-

ning after you close the terminal session.

In other words, this cuts the ties be-

tween the child process and its parent.

Simply call nohup with the program

(and its options):

nohup find /scratch3/mp3 -name

"*.ogg" > ogg_liste.txt

This approach does not automatically

move the process to the background, but

the methods I just described will take

care of this.

Closing the shell means that you can’t

communicate with the process – or does

it? Even if you do not have a direct ter-

minal connection, you can still control

the program using the signals discussed

next.

Although the name might suggest other-

wise, the kill program need not be fatal.

On the contrary, you use it to send sig-

nals to processes, including polite re-

quests to stop working.

As you might expect, non-privileged

users are only allowed to talk to their

own processes, whereas the root user

can send signals to any process.

Typing kill -l shows you the instructions

that kill passes to a process. The follow-

ing are the most relevant ones for your

daily work:

s฀ SIGHUP: This tells a process to restart

immediately after terminating and is

often used to tell servers to parse mod-

ified configuration files.

s฀ SIGTERM: This request to terminate

 allows the process to clean up.

s฀ SIGKILL: This signal forces a process

to terminate come what may. But in
01 $ xpdf article.pdf &

02 [1] 5622

03 $ audacity &

04 [2] 6559

05 [...]

06 $ jobs

07 [1] Running xpdf article.

pdf &

08 [2]- Running audacity &

09 [3]+ Running sleep 3600 &

Listing 2: Jobs

01 $ ps x

02 PID TTY STAT TIME

COMMAND

03 3011 ? Ss 0:00 /

usr/bin/gnome-session

04 3061 ? S 0:00 /

usr/bin/dbus-launch

--exit-with-session /usr/bin/

gnome-session

05 [...]

06 3086 ? Ssl 0:02

gnome-panel --sm-client-id

default1

07 3088 ? Ssl 0:02

nautilus --no-default-window

--sm-client-id default2

Listing 1: Command

ps displays the full set of command-line

parameters in the COMMAND column.

Some programs, such as the wget

download manager, optionally accept

passwords for authentication in the

shell. The password also appears as a

command in the process list; theoreti-

cally, any user on the system could sniff

sensitive data.

Passwords

Command Line: Process Control

90 ISSUE 93 AUGUST 2008

some cases, it takes more to get rid of

the process. After waiting in vain for a

timeout, you have no alternative but

to reboot.

s฀ SIGSTOP: Interrupts the process until

you enter SIGCONT to continue.

To send a signal to a process, you can

enter either the signal name or number

followed by the process ID – for exam-

ple, kill -19 9201. Also, you can specify

multiple process IDs. If you call kill

without any parameters but with the

PID, it will send the SIGTERM signal

to the process.

To find the right process ID, you can run

ps as described previously. The shell

command can be combined with other

tools, such as grep, in the normal way.

For example, you could do this (Listing

3) to find processes with ssh in their

names.

Besides the SSH server (sshd), the list

includes all of your SSH connections. To

send the same signal to all of these pro-

cesses, you would normally list the PIDs

in the kill command line, which can be

tricky if the list is too long.

The killall gives you a workaround –

the tool understands all of the kill sig-

nals but expects process names instead

of IDs.

The killall -19 ssh command sends

all your SSH connections to sleep (SIG-

STOP). If you do not specify the signal,

killall assumes you mean SIGTERM, just

like kill.

Because killall really does remove the

processes in one fell swoop, it is a good

idea to switch to interactive mode (-i op-

tion). For each process, the tool prompts

you to decide whether to terminate.

If you are looking for process IDs, a com-

bination of ps and grep is a good idea,

but you can save some typing by run-

ning pgrep instead.

To find all processes with ssh in their

names, do the following:

$ pgrep ssh

2816

3992

4249

If you need more context, add the -l pa-

rameter and pgrep will reveal the names.

To discover the full command line, in-

cluding all arguments, combine -l and -f:

$ pgrep -lf ssh

2816 /usr/sbin/sshd

3992 ssh -X chicken@asteroid

4249 ssh chicken@nugget

The pkill command, which is an abbre-

viation for the Linux “hit squad,” under-

stands the same options as pgrep, and

is run against processes by specifying a

signal in the same way as kill:

pkill -19 ssh

Another practical aspect is that system

administrators can target another user’s

processes by setting the -u flag (see List-

ing 4). To do so, root simply passes in

the username as an option. p

01 # pgrep -lfu petrosilie

02 7682 sleep 4000000000

03 7792 bash

04 [...]

05 # pkill -19 -u petrosilie

Listing 4: -u flag
01 $ ps aux | grep ssh

02 root 2816 ... 0:00 /usr/

sbin/sshd

03 chicken 3992 ... 0:00 ssh -X

chicken@asteroid

04 chicken 4249 ... 0:00 ssh

chicken@nugget

Listing 3: grep ssh

Heike Jurzik studied

German, Computer

Science and English

at the University of

Cologne, Germany.

She discovered

Linux in 1996 and

has been fascinated

with the scope of the Linux command

line ever since. In her leisure time you

might find Heike hanging out at Irish

folk sessions or visiting Ireland.

T
H

E
 A

U
T

H
O

R

Command Line: Process Control

91ISSUE 93AUGUST 2008

