
M
odern computer programs han-

dle increasingly large volumes

of data. Whereas data-mining

applications are content to sift through

mountains of existing data, Internet

search engines constantly horde new in-

formation. Users who access this data

regularly encounter files of several giga-

bytes or more.

Legacy filesystems soon reach their

limits with this kind of data and

throughput. Consequently, organizations

that manage huge volumes of data need

an alternative solution for fast and safe

access. Having redundant data storage is

useful; after all, who wants to lose the

valuable data gained by several days of

number crunching because of a banal

disk error?

Distributed filesystems fulfill these

 requirements. A distributed filesystem

splits the data into manageable chunks

and stores the chunks on a scalable clus-

ter of computers. By virtualizing storage

on the cluster, the filesystem then tricks

applications into believing that they are

talking to an enormous hard disk.

Into Space
The Kosmos filesystem (KFS) [1] is a

promising new entry into this field. Kos-

mix Corporation developed KFS and re-

leased the source code under the Apache

license. The first alpha version 0.1 ap-

peared in September 2007. KFS’s relative

youth shows when setting up the filesys-

tem: KFS requires 64-bit Linux. If possi-

ble, the Linux version and distribution

should be identical on all the computers

involved in data storage.

KFS is up against a number of re-

nowned competitors, including Google

filesystem (GFS), which Google uses as

the underpinnings for its search engine,

and Hadoop project’s HDFS [2]. The KFS

developers lifted much of the structure

and functionality from Google, but they

have removed a number of limitations.

KFS – like GFS – is optimized for scenar-

ios in which many large files are created

once but read many times [3].

Job Descriptions
The Kosmos filesystem consists of three

components:

• one or multiple chunk servers that

store the data on their own hard disks,

• a metaserver that keeps an eye on the

chunk servers, and

• an application that quickly gets rid of

a single large file.

KFS thus works much like a database

that resides between a computer pro-

Distributed filesystems effortlessly juggle enormous files in the gigabyte and terabyte ranges. The Kosmos

filesystem plans to impress its competitors. BY TIM SCHÜRMANN

The Kosmos distributed FS

KOSMOS FILES

Kosmos FSKNOW-HOW

48 ISSUE 90 MAY 2008

048-051_kosmos.indd 48 12.03.2008 12:07:53 Uhr

gram and the traditional filesystem (see

Figure 1).

Chunkwise
KFS first splits a file into handy 64MB

blocks. The filesystem distributes these

chunks evenly over all attached servers,

aptly referred to as block or chunk serv-

ers. The servers store the blocks on nor-

mal filesystems that belong to the host

operating systems.

If the chunk servers start to run out of

storage capacity, the administrator can

simply add a new computer to the clus-

ter. KFS automatically adapts the new

storage node, which keeps the whole

system scalable and helps it keep pace

with increasing storage demands.

KFS mitigates hardware errors by stor-

ing the blocks from every single file re-

dundantly on multiple chunk servers;

typically, three instances of each file

placed in storage exist.

This safety net allows administrators

to deploy standard PCs as cheap, but re-

liable, data repositories. Google FS

proves that this works day after day. If a

disk or server fails, you just replace it

with a new one. KFS detects the replace-

ment and automatically integrates the

newcomer into the cluster.

As another preventive measure against

data loss, each block has both a version

number and a checksum. KFS evaluates

the checksum on each read operation. In

case of irregularity, the distributed file-

system deletes the defective chunk and

replaces it immediately with an intact

copy (re-replication).

Version numbers help

to identify obsolete

chunks: If a poor Internet

connection temporarily

separates one server from

the cluster, it can identify

obsolete chunks quickly

when the connection is

reestablished and retrieve

the more recent variant

from the other servers in

the cluster.

Metastases
Unfortunately, chunk

servers do not bother re-

membering which parts

of which file are stored on

which member server. For

this reason, a metadata

server (or metaserver, for short) is de-

ployed to monitor a number of chunk

servers (the Google filesystem refers to

these metaservers as masters). As the

name suggests, the metaservers store the

metadata, including details of which

chunk server has which part of a file, the

corresponding file sizes and file names,

and information on which processes are

currently accessing each file.

At regular intervals, the metaserver

checks the capacity of the chunk servers

assigned to it. If necessary, it will mi-

grate chunks from a server with a heavy

load to a less busy machine (rebalanc-

ing). This optimizes use of available

 capacities, thus improving the perfor-

mance in general.

Clients
Applications use the client library to ac-

cess this infrastructure (Figure 2). The li-

brary includes a complete filesystem API

that allows clients to store (large) files

on KFS and to manipulate and read ex-

isting files in the normal way.

In contrast to its competitor HDFS,

KFS supports writing to multiple arbi-

trary positions in a file or appending

data to existing files.

Unfortunately, the client library is the

only door to the distributed filesystem,

except for a couple of minimal tools (see

the box titled “Toolbox”). Consequently,

there is no escaping modifying your own

programs, and the choice of program-

ming languages is restricted to C++ or

Python. Java programmers can use the

JNI native interface. In a clever move,

the KFS developers have added an API

for the HDFS filesystem, a competitor to

KFS; programs written for HDFS can be

ported easily to KFS.

Quickstart
Kosmos FS is provided in the form of a

handy source code archive that you can

only build on a 64-bit system. Apart

from this, Kosmos is fairly frugal in its

requirements: besides CMake, you just

need the log4cpp and Boost libraries.

After fulfilling the requirements, just un-

pack the archive and open the Cmake-

Lists.txt file.

By default, the compiler will build the

KFS programs and libraries with debug

information. If you prefer to do without

debugging, change the value in quotes

that follows CMAKE_BUILD_TYPE from

Debug to Release. If you need FUSE sup-

port (see the “Toolbox” box for details),

uncomment the

set (Fuse_LIBRARY_DIR "")

KNOW-HOWKosmos FS

49ISSUE 90MAY 2008

Figure 1: The Kosmos filesystem resides between the existing

hardware and the application, just like a legacy database. A

client library handles access to the virtual filesystem.

Application

KFS Client Library

KFS Server

Hard Disk

Figure 2: An application wanting to access a file first turns to the client library. The library

queries the metaserver to discover which cluster servers the file resides on and then

retrieves the file from the servers.

KFS

Aplication

KFS

Client

Library

Cluster 1

Cluster 2

Metaserver

048-051_kosmos.indd 49 12.03.2008 12:07:57 Uhr

line and add the path to the FUSE library

in quotes.

The administrator needs to enter a

couple of commands to build and install

KFS. To start, change to the KFS source

code directory, which is ~/kfs-0.1.1 in

this example. When you get there, enter

the following commands:

mkdir build

cd build

cmake ~/kfs-0.1.1

gmake

gmake install

The last command suggests a system in-

stallation, but what actually happens is

that the programs created in the previ-

ous step are moved to ~/kfs-0.1.1/

build/bin and the corresponding librar-

ies to ~/kfs-0.1.1/build/lib or ~/

kfs-0.1.1/build/lib-static.

If you need a Java interface, you can

change to the KFS directory, ~/kfs-0.1.1,

and launch ant jar.

If everything has worked out okay, the

kfs.jar file should be in the build subdi-

rectory. This package contains every-

thing you need to develop Java programs

that use KFS.

A Python interface is slightly more

complex. Start by changing directory to

~/kfs-0.1.1/src/cc/access, then open the

file kfs_setup.py in an editor and modify

the include paths.

Next, give the python kfs_setup.py ~/

kfs-0.1.1/build/lib build command. This

creates kfs.so in the build directory,

which you can then integrate with your

Python system by typing python kfs_

setup.py ~/kfs-0.1.1/build/lib/ install.

Launching KFS
The next step distributes the binary files

to the meta- and chunk servers. A Py-

thon script in the ~/kfs-0.1.1/scripts

 directory takes care of this, creating a

customized program package for each

server and then securing the installation

with SSH.

To allow this to happen, all of your

servers should run the same Linux envi-

ronment, or at least the distributions

should not be wildly different. Configur-

ing SSH with keypairs removes the need

to keep entering multiple passwords.

Topology
The only thing missing now is the con-

figuration file that tells the script which

computers on the network will be han-

dling which task. Listing 1 shows a sam-

ple configuration file.

The file has a separate section for each

server involved, headed by the server

name in square brackets. The minimal

requirement is a [metaserver] section.

Following is a section for each chunk

server, which typically takes the form of

[chunkserver1] through [chunkserverN].

The KFS cluster in this example com-

prises a metaserver and two cluster serv-

ers. Each section contains the settings

for one server.

node: is followed by the name of the

IP address for the server. rundir: is fol-

lowed by the directory in which the bi-

naries will be stored (in the example in

Listing 1, this is the home directory for

the tim user account on each server).

The baseport: keyword specifies the TCP

port that the server will use to communi-

cate with the other nodes.

The computer names do not need to

be different. In fact, Kosmos FS will let

you run all the servers on a single ma-

chine – and this can be localhost – but in

cases like this, you must assign unique

TCP ports to your metaservers and clus-

ter servers.

Each chunk server has a space: option

that specifies how much disk space the

server will use to save data. In the exam-

ple here, the first chunk server provides

30GB, the second slightly less,

18,000MB. Sample configuration files are

available in the conf directory below the

source code archive.

Command Center
Now that the configuration file is com-

plete, the next step is to change directory

to scripts and enable the following:

python kfssetup.py -f U

configuration_file.cfg U

-b ../build/bin

Thanks to the configuration file, all the

servers and SSH can be launched cen-

trally from the current machine:

python kfslaunch.py -f U

configuration_file.cfg --start

The following call shuts the system

down:

python kfslaunch.py -f U

configuration_file<.cfg --stop

Specifying the configuration file is im-

portant and lets users manage different

KFS clusters from a single console.

Kosmos FSKNOW-HOW

50 ISSUE 90 MAY 2008

01 [metaserver]

02 node: 192.168.1.100

03 rundir: /home/tim/kfs/

metaserver

04 baseport: 20000

05 [chunkserver1]

06 node: 192.168.1.101

07 rundir: /home/tim/kfs/chunk1

08 baseport: 30000

09 space: 30 G

10 [chunkserver2]

11 node: 192.168.1.102

12 rundir: /home/tim/kfs/chunk2

13 baseport: 30000

14 space: 18000 M

Listing 1: Kosmos FS
Sample Configuration

The client library gives applications con-

venient access to filesystem functional-

ity, but to check the content of a direc-

tory would mean programming a tool

for the task. The KFS package has a spe-

cial Shell to remove the need for extra

programming. The Shell provides coun-

terparts to popular Unix tools, including

ls, cp, and mv. Thanks to the Shell, users

can navigate the KFS tree in the normal

way. To launch the Shell, you need to

execute a script in the scripts directory

below the source code archive:

python kfsshell.py -f U

Konfigurationsdatei.cfg -b U

~/kfs-0.1.1/build/bin/KfsPing

KfsPing is an advanced ping that pro-

vides a useful service monitoring KFS

servers. Typing KfsPing -h displays help.

Other useful tools are located in the

build/bin/tools directory.

If you do not like the idea of special

commands, your alternative on Linux is

FUSE support (Filesystem in User-

space), a kernel module that migrates

a filesystem driver to user mode. FUSE

 allows users to mount KFS like a normal

hard disk partition and then deploy the

full range of Linux tools.

Toolbox

048-051_kosmos.indd 50 12.03.2008 12:07:59 Uhr

Now that the servers are running,

users can start moving data onto the

enormous new filesystem using either

the special KFS Shell (see the box titled

“Toolbox” for more details) or via the

API. A simple example of a C++ pro-

gram that stores its data in KFS is given

in Listing 2.

Unfortunately, the header files are hid-

den away in the depths of the source

code archive in src/cc. This also applies

to the libraries, which are located in

build/lib:

g

++ test.cpp -I U

~/kfs-0.1.1/src/cc -L U

~/kfs-0.1.1/build/lib/ U

-lkfsClient -lkfsIO U

-lkfsCommon

Before calling the results, LD_LIBRARY_

PATH has to be set:

export LD_LIBRARY_PATH=U

~/kfs-0.1.1/build

To save the linker the trouble of search-

ing for the dynamic libraries, you can

link your own programs with the static

variant, which is located in ~kfs-0.1.1/

build/lib-static.

To handle huge

volumes of data, a

KFS application sim-

ply opens a new file

via the client library.

Buffers
First, the library buf-

fers the incoming

write operations and

waits for the cache

memory reserved for

this purpose to fill or

for the application to

issue a flush com-

mand before pushing

the data to the chunk

servers.

Immediately after

the data arrive, they become available

for further operations.

Besides the outgoing data, the client

library also buffers any metadata that

are requested for 30 seconds. This helps

to avoid unnecessary, repeated server

contact.

If a client is running on a chunk

server, it retrieves the data locally rather

than using up network bandwidth. If

a chunk server suddenly fails during a

read operation, the client library auto-

matically switches to another chunk

server. All of this is completely transpar-

ent for the application.

Conclusions
Kosmos FS is an interesting alternative

to HDFS and Google FS, but it is still at

an early stage of development. Cur-

rently, one weak point is the metaserv-

ers. They need to be able to deliver

metadata quickly. After all, to be able to

process the file, a client needs to know

which node the file it requires is stored

on. If the metaserver fails completely,

the files on the chunk servers it manages

are also unreachable.

Because the metaserver additionally

handles load distribution, it is responsi-

ble for the performance of the KFS net-

work it manages. Unfortunately, there is

currently no replication plan for meta-

data, in contrast to the scheme used by

the chunk servers. Administrators need

to take care of this manually and back

up the data regularly.

Another issue is the lack of access

controls. Currently, users can store any

data on the distributed filesystem and

read any data stored there. For this rea-

son, KFS should only be deployed in

trusted environments until a more ma-

ture version is released. ■

Figure 3: Kosmos FS is available at SourceForge.

KNOW-HOWKosmos FS

51ISSUE 90MAY 2008

[1] Kosmos filesystem:

http:// kosmosfs. sourceforge. net

[2] HDFS and the Hadoop project:

http:// lucene. apache. org/ hadoop

[3] Paper on Google filesystem (GSF), on

which KFS is based: http:// research.

 google. com/ pubs/ papers. html

INFO

01 ...

02 #include "libkfsClient/

KfsClient.h"

03

04 using namespace KFS; // KFS

Namespace:

05

06 int main(int argc, char

**argv)

07 {

08 string serverHost =

"localhost";

09 int port = 20000;

10

11 KfsClient *gKfsClient;

12

13 // Get access to

filesystem:

14 gKfsClient = KfsClient::

Instance();

15 gKfsClient->Init

(serverHost, port);

16

17 // Create subdirectory:

18

gKfsClient->Mkdirs("testdir");

19

20 // Open file, "fd" is the

handle:

21 int fd = gKfsClient->

Create("testdir/foo.1");

22

23 // Write junk:

24 int numBytes=2048;

25 char *buffer = new

char[numBytes];

26 gKfsClient->Write(fd,

buffer, numBytes);

27

28 // Flush changes:

29 gKfsClient->Sync(fd);

30

31 // Close file:

32 gKfsClient->Close(fd);

33 }

Listing 2: Creating a File

048-051_kosmos.indd 51 12.03.2008 12:08:00 Uhr

