
32

C
loop is a kernel block device

module used in Live CDs such

as Knoppix. The cloop module

allows the system to read compressed

data, usually from a file, thus creating

compressed virtual disks. Using cloop,

a Linux installation of about 2GB fits on

a single 700MB CD-R disc. In this article,

I look at how cloop works and provide

some insight into general kernel struc-

tures of a block device.

A Unix system traditionally distin-

guishes between character-based and

block-based devices. If you look into the

output of ls -l /dev, you will easily recog-

nize these devices by the prefix – c for

character-based and b for block-based

devices – at the beginning of the output

line (see Listing 1).

Character-based devices, such as tape

drives, mice, and gamepads, provide se-

quential, character-by-character access

to data.

Block devices instead allow direct ac-

cess to arbitrary blocks of data, indexed

by block number or sector (segments of

512 bytes), and they are usually used for

random access storage like ramdisks,

CD-ROMs, floppy disks, hard disks, and

hard disk partitions.

Filesystems are a logical representa-

tion of ordered data that is often present

on a block device. A filesystem turns raw

data into the familiar directory/ file view.

The mount command is the bridge be-

tween a block device partition and its

projection into a mount point directory.

Cloop: A Compressed
Loopback Block Device
One block device included in any Linux

kernel is loop, which maps a plain file to

a block device node in /dev/loop

[number]. The loop-attached file can

then be mounted like an ordinary hard

The cloop module lets you manage compression at the block device

level. Read on to learn how Knoppix and other Live CDs fit all that

software on a single disc. BY KLAUS KNOPPER

Block device compression with the cloop module

DEEP COMPRESSION

K
Y

R
O

, p
h

o
to

c
a
s
e
.c

o
m

CloopCOVER STORY

32 ISSUE 86 JANUARY 2008

032-036_cloop.indd 32 15.11.2007 10:17:18 Uhr

33

disk, optionally with encryption. How-

ever, this driver still only provides a

translation between different data repre-

sentations of the same size.

Cloop, which was first written in 1999

for kernel 2.2 by iptables author Paul

‘Rusty’ Russell, uses a blockwise com-

pressed input file that reduces the neces-

sary space to around 1/ 3 of the original

size for executable files. I ported, and

later rewrote, cloop for newer kernel ver-

sions, extending the module to support

64-bit file access (thus allowing file sizes

beyond 4GB), multiple input files, and

ioctl extensions to permit the exchange

of input files on-the-fly.

Since cloop is a block device and not a

filesystem like squashfs, the compressed

image can be anything, from raw data to

arbitrary filesystem or database struc-

tures. On a Live CD, the cloop image

usually contains an iso9660 file system,

which is the most popular read-only and

read-optimized filesystem used for data

CDs. Cloop supports all filesystem fea-

tures necessary for a Unix system

through the standard RockRidge exten-

sion (long file names, permissions,

 symlinks, etc.).

Cloop also comes with several validity

checks that return non-fatal error codes

to the calling application in case invalid

compressed data is read or read errors

occur (scratches on the CD surface

sometimes make data partly unread-

able). Cloop only uses data that has

been successfully

read and decom-

pressed, and it

never terminates

or interrupts ac-

cess to the under-

lying device. That

way, even partly

damaged data can

still be restored,

and crashes be-

cause of read er-

rors are unlikely

(though, of

course, an execut-

able program that

has been damaged

will most likely

 refuse to run and

terminate with a

segmentation

fault). This feature

may give cloop

a slight advantage against compressing

filesystems, in which an entire file be-

comes unreadable if there is a read error

right at the beginning of that file. In

cloop, at maximum, one block is missing

when read errors occur within this

block.

One disadvantage is that cloop is read-

only. Attempting to rewrite cloop to sup-

port write operations would probably be

very inefficient because, at each write

operation, the compressed block struc-

ture would have to be reordered, and

blocks on a block device can never be

“deleted,” since the block device has

no information about whether or not

data is actually needed.

Also, when compressing a block, the

resulting block size is not really predict-

able. In fact, a compressed block can be

slightly larger than an uncompressed

block, in case that the data is already

stored compressed. When exchanging

compressed blocks, the block index table

would have to be recalculated (all offsets

after the changed block will also

change). Therefore, cloop is very opti-

mized for reading data, but writing is

not currently supported and probably

never will be.

If you need write support on read-only

media, you are better off with a filesys-

tem such as AuFS or Unionfs that merges

the read-only directory with a directory

offering write support.

Cloop can handle parallel accesses to

multiple cloop image files. If you have

to split files because of size limits in the

underlying filesystem, this is important

(i.e., the 2GB and 4GB maximum file

size in FAT32 and iso9660, respectively).

COVER STORYCloop

33ISSUE 86JANUARY 2008

01 crw-rw---- 1 root root 10, 1 2007-10-18 10:41 /dev/psaux

02 brw-rw---- 1 root disk 3, 0 2007-10-18 10:41 /dev/hda

03 brw-rw---- 1 root disk 240, 0 2007-11-01 21:38 /dev/cloop

Listing 1: Character and Block Device Nodes

01 $ sudo losetup /dev/cloop1 /media/cdrom/backup.cloop

02 $ sudo mount -r -t ext2 /dev/cloop1 /mnt

03 $ dmesg | tail -2

04 cloop: Initializing cloop v2.622

05 cloop: loaded (max 8 devices)

06 cloop: losetup_file: 3571 blocks, 65536 bytes/block, largest block

is 65562 bytes.

Listing 2: Attaching a New Cloop Image

01 register_blkdev(major=240, cloop_name="cloop");

02 for(i=0; i<cloop_max; i++) cloop_dev[i] = cloop_alloc(i);

03 if(file) {

04 initial_file=filp_open(file,O_RDONLY|O_LARGEFILE,0x00);

05 cloop_set_file(0,initial_file,file);

06 }

Listing 3: Starting the Cloop Block Device

Figure 1: (C)loop maps a hard disk image file to a block device and lets

you mount the image like a real hard disk partition.

or
Disk Image

Plain file

Mountpoint with visible

directories and files

mount −r −t iso9660 /dev/cloop /mnt

Filesystem/Mount

cloop

modprobe cloop file=/path/to/file.cloop

/
/usr /home

032-036_cloop.indd 33 15.11.2007 10:17:26 Uhr

Cloop images can be attached and de-

tached at run time using the standard

losetup command (see Listing 2).

Cloop can work with input files that

are mounted over NFS. This feature is

important if you plan to run completely

diskless clients with filesystems

mounted over cloop. Another interesting

feature of cloop is that it can read and

decompress data asynchronously using

a kernel thread, so it’s not blocking a

process group and not staying in kernel

space for a noticeable time.

Access to cloop image files can be sus-

pended while they are in use (a feature

introduced by Fabian Franz). The idea

behind this feature is that you can tem-

porarily remove a storage device that is

in use by cloop without getting read er-

rors. After receiving a special ioctl call,

cloop will patiently wait until the under-

lying file is activated (and re-analyzed)

again, so you could eject a Live CD

while an OS is running from it.

One drawback is that all processes

that access the cloop device will be

blocked until the underlying file is re-

 inserted. In the worst case, the desktop

will freeze, which could make it hard to

send the command for unfreezing cloop.

Kernel Block Device
Components
To start a kernel 2.6.x block device in the

module initialization, you need to call a

few kernel procedures. Listing 3 should

give you the basic idea, although the

code in Listing 3 does not include extra

features such as error checks and bailout

procedures.

If a file is given as module parameter

file="/path/to/first/image", this file is

opened and associated with the first

cloop device /dev/cloop0.

How does /dev/cloop0 know what to

do when a process opens the block de-

vice and reads from it? Unlike filesys-

tems, block devices have a more com-

plex way of performing input and out-

put.

Depending on which kind of block de-

vice you are using, there are some opera-

tions that have to be supported and oth-

ers that won’t. In case of a disk or parti-

tion, you can use a structure like the one

in Listing 4, which tells the kernel what

to do if someone opens or closes a /dev/

cloop* file.

cloop_open() needs to increase the use

counter of the device so that the module

knows it is in use. cloop_close() does the

opposite. cloop_ioctl(), which is a special

case that handles losetup for exchanging

the underlying cloop image file, also sus-

pends device operations in case the

CLOOP_SUSPEND ioctl is sent.

Block devices have two methods for

reading from the device. The direct

method is setting up a request function

that will be called each and every time a

read() on the device is performed. This

request function is then associated with

the default block queue that has been

created for the major device ID of cloop

when the block device was set up (see

Listing 5a).

cloop_request_fn() has to find out

which device was accessed and then

transfer data from the cloop file into the

memory space that was given in buffer_

head. This direct method was used until

cloop version 2.06.

A disadvantage of this direct method

is that the entire device is blocked until

cloop_request_fn() returns. Actually,

probably because of this, the direct

method ceased to work for cloop starting

from kernel 2.6.22.

Per-Device Wait Queue
The new approach to block device I/ O is

to use a per-device wait queue. With this

CloopCOVER STORY

34 ISSUE 86 JANUARY 2008

01 static struct block_device_

operations clo_fops =

02 {

03 owner: THIS_MODULE,

04 open: cloop_open,

05 release: cloop_close,

06 ioctl: cloop_ioctl

07 };

08

09 ...

10

11 ((struct gendisk *) clo_

disk)->fops = &clo_fops;

Listing 4: Disk Operations

01 static int cloop_request_fn(request_queue_t *q, int rw, struct

buffer_head *bh)

02 { /* do something with the read request ... */ }

03

04 blk_queue_make_request(BLK_DEFAULT_QUEUE(cloop_major=240),

 cloop_request_fn);

Listing 5a: Setting Up a Direct Callback

01 /* Called while queue_lock is held by kernel. */

02 static void cloop_do_request(struct request_queue *q) {

03 struct request *req;

04 while((req = elv_next_request(q)) != NULL) {

05 struct cloop_device *clo = req->rq_disk->private_data;;

06 blkdev_dequeue_request(req); /* Dequeue request first. */

07 list_add(&req->queuelist, &clo->clo_list); /* Add to working list

for thread */

08 wake_up(&clo->clo_event); /* Wake up cloop_thread */

09 }

10 }

11

12 ...

13

14 cloop_dev[i].clo_queue = blk_init_queue(cloop_do_request,

&clo->queue_lock);

15 cloop_dev[i].clo_disk->queue = cloop_dev[i]->clo_queue;

Listing 5b: Adding a Wait Queue

032-036_cloop.indd 34 15.11.2007 10:17:31 Uhr

method, the kernel collects requests

from various sources in a linked list and

occasionally delivers them to a proce-

dure in cloop.

For slow physical reads, letting the

kernel collect read requests and deliver

them all at once makes the rest of the

system act more efficiently, since less

time is spent in kernel space.

Cloop version 2.622 takes each request

out of the block device queue and puts it

into an internal queue, transferring it to

a per-device kernel thread, which does

the real work with lower priority and no

spinlock. This means that the block de-

vice I/ O scheduler never blocks, because

it does not have to wait for a slow physi-

cal I/ O to complete (Listing 5b).

The queue has to be added to the disk

associated with the cloop device, and

this requires a lock that can be held by

the kernel when requests are processed

in order to avoid parallel queue manipu-

lation. A kernel thread is created for

handling the real work of processing

the internal queue of read requests

(see Listing 6).

cloop_handle_request() will now read

blocks from the cloop image file, decom-

press them into memory, and transfer

the parts of decompressed data that were

requested by the calling process to that

process’ buffer.

The instructions can be arbitrarily

complex and take as long a necessary

because cloop_handle_request() is run-

ning in the kernel thread, which is a

 separate process and does not block the

entire system.

Because the request had been assem-

bled from block I/ O segments, it must be

divided into data-to-be-read units, which

is what rq_for_each_bio() and bio_for_

each_segment() do (Listing 7).

cloop_load_buffer() consists of a phys-

ical read procedure and a decompressor

based on the kernel’s internal uncom-

press(), which is also used for decom-

pressing the initial ramdisk and some

kinds of compressed data packets in net-

work protocols.

Explaining kernel-library methods like

do_generic_read() would be an article in

itself, but it is fair to say that they basi-

cally do the same thing as read() or

fread(), which you may know from the

C library, just on the (much more com-

plex) kernel layer, which has a very low-

level view of files.

cloop_load_buffer() expects the block

number of the block-to-read, which can

be calculated from the byte offset of the

data section requested by a process, and

the block size used in the cloop image

file associated with the device.

Creating a Cloop Image File
After this short walk through the kernel

side of cloop, the next step is to consider

the image file. The cloop file format (see

Figure 2) is much less complicated than

the module source would suggest.

The 128 bytes that appear at the be-

ginning of the cloop image file are for

 future extensions and the possibility of

making an “executable” cloop image file.

Usually, these 128 bytes contain a shell

script that will call modprobe with the

right parameters in order to activate this

image, so that you can attach the image

to a cloop device by typing its pathname.

The version number within the header is

used to distinguish between older ver-

sions that still use 32-bit numbers.

In general, all numbers contained in

the header of a cloop file have an archi-

tecture-independent network byte order,

so that the same image will work on big-

endian as well as little-endian systems.

Cloop assumes uncompressed blocks

of constant size (at least within the

same image file) because block devices

always use a constant block size, and it’s

easier to calculate block numbers by the

total size of a partition that way. The

COVER STORYCloop

35ISSUE 86JANUARY 2008

01 static int cloop_thread(void *data) {

02 struct cloop_device *clo = data;

03 current->flags |= PF_NOFREEZE;

04 set_user_nice(current, -20);

05 while (!kthread_should_stop()||!list_empty(&clo->clo_list)) {

06 struct list_head *n, *p;

07 int err = wait_event_interruptible(clo->clo_event,

08 !list_empty(&clo->clo_list) || kthread_should_stop());

09 if(unlikely(err)) continue;

10 list_for_each_safe(p, n, &clo->clo_list) {

11 int uptodate;

12 struct request *req = list_entry(p, struct request, queuelist);

13 spin_lock_irq(&clo->queue_lock);

14 list_del_init(&req->queuelist);

15 spin_unlock_irq(&clo->queue_lock);

16 uptodate = cloop_handle_request(clo, req); /* do the read/

decompression */

17 spin_lock_irq(&clo->queue_lock);

18 if(!end_that_request_first(req, uptodate, req->nr_sectors))

19 end_that_request_last(req, uptodate);

20 spin_unlock_irq(&clo->queue_lock);

21 }

22 }

23 return 0;

24 }

25

26 ...

27

28 clo->clo_thread = kthread_create(cloop_thread, clo, "cloop%d",

 cloop_num);

Listing 6: A Kernel Thread Processes Requests

032-036_cloop.indd 35 15.11.2007 10:17:31 Uhr

block size is present in the header of a

cloop file.

Compressing blocks of constant size,

however, leads to different sizes in the

compressed output, depending on how

compressible the contained data is. Be-

cause of this, the image file needs an

index of compressed block locations at

the beginning, before the compressed

data starts.

The compressed data, block after

block, follows until the end of file is

reached. With the block index in the

header part, cloop knows where the

compressed blocks can be found within

the data part.

Although decompressing a cloop file

is most conveniently done by just copy-

ing from /dev/cloop to a partition or file,

compression is done via a userspace

 program called create_compressed_fs.

This program is misnamed because

create_compressed_fs does not compress

a filesystem, but arbitrary data in cloop

format. The most basic call to create_

compressed_fs is:

create_compressed_fs U

inputfile blocksize > U

outputfile

The use of - as the input file name will

cause a read from stdin. create_com-

pressed_fs can be used as a pipe, without

the need of a temporary file, so you can

make compressed

backups on CD:

mkisofs -l -R /

home/username |U

 create_

compressed_fs -

 65536 |U

 cdrecord -v -

Because create_com-

pressed_fs has to

write the block index

header before the

data, the entire com-

pressed image is

stored in virtual mem-

ory (ram+swap)

until all data is com-

pressed and indexed,

so cdrecord will start

writing at the end of

the compression pro-

cess.

Make sure you have

enough swap space

available when using

this method.

Adding the -b

(“best”) option will try gzip-0 (un-

compressed) to gzip-9 (best gzip com-

pression) and 7zip compression (gzip-

compatible mode) one after the other

and use the smallest result. This com-

presses about 7% better than gzip-9

(the default) alone; the decompressor

automatically finds the right decom-

pression method of each compressed

block.

Debian maintainer Eduard Bloch has

rewritten create_compressed_fs and

added an alternative syntax that allows

using temporary files instead of memory,

threaded/ parallel compression for multi-

processor machines, and daemon mode,

which allows setting up a cluster of com-

puters for fast compression of huge

amounts of data. When installing the

cloop-utils from Debian, you will get this

newer version of create_compressed_fs,

which is also present in the current

cloop source.

Sources and Compiling
The most current source code for cloop

is always at http:// debian-knoppix.

 alioth. debian. org/. Compilation should

succeed with

make KERNEL_DIR=U

/path/to/your/kernel/sources

which will build the cloop module cloop.

ko as well as the cloop compression util-

ity create_compressed_fs. �

01 /* This function does all the real work. */

02 /* returns "uptodate" */

03 static int cloop_handle_request(struct cloop_device *clo,

04 struct request *req) {

05 struct bio *bio;

06 rq_for_each_bio(bio, req) {

07 struct bio_vec *bvec;

08 int vecnr;

09 bio_for_each_segment(bvec, bio, vecnr) {

10 /* read compressed data from file, decompress,

11 transfer data to process */

12 ...

13 buffered_blocknum = cloop_load_buffer(clo,block_offset);

14 ...

15 }

16 }

17 }

Listing 7: Splitting a Request

Figure 2: Structure of a cloop input file.

#!/bin/sh

#V2.00 Format

modprobe cloop file="$0"

exit 0

...

: num_blocks compressed data blocks

: num_blocks+1 64−bit numbers, network order

: 32−bit number, network order

: 32−bit number, network order

compressed_data

data_index

num_blocks

block_size

Preamble (128 Bytes)

CloopCOVER STORY

36 ISSUE 86 JANUARY 2008

032-036_cloop.indd 36 15.11.2007 10:17:31 Uhr

