
66

This article describes some special
kinds of program input that
administrators who maintain

Websites often contend with. I’ll present
case studies that take a close look at
problems and solutions related to cross-
site scripting, malicious email
addresses, and buffer
overflows.

If there is a theme to this discussion, it
is that developers need to carefully vali-
date all input and the relationships
between various items of input. Assume
all input is guilty until proven innocent.
And the more complex this input is, the

more important
it is to

code carefully to anticipate the actions of
would-be intruders.

In the case of complex problems, the
temptation is to pass the buck, leaving
input validation to the programs that fol-
low (“The guys in development will
have done their homework!”) Unfortu-
nately, it is often the case that everyone
involved in the process thinks the same
way, and the gaping hole stays open.
Every admin, and every developer, is

well advised to listen to their con-
science from time to time,

remembering that their output
will be the input for a pro-

gram somewhere down-
stream.

Case 1: Cross-
Site Scripting
Developing websites
is probably not one
of the admin’s more
classical chores. But
in small to medium-
sized businesses,
you still find admins
tinkering with public

websites. System
admins who are not

trained as programmers
may underestimate the

dangers that abound in
this environment. One of

the biggest dangers is a spe-
cial kind of input: HTML-for-

mated text (or text formated in
another Web language.) A harmless-

looking facade can conceal malevolent
Javascript code.

The attacker’s true target is not the
web server that stores the document, but
the client-side browser that opens it. In a
cross-site scripting attack, the malevo-

Like a poison apple, a Web program that is tasty on the surface may contain a highly dangerous core. Admins

who do their own programming need to follow secure programming practices to avoid the bitter taste of

insecurity. BY DOMINIK VOGT

Studies in secure programming for admins

DANGEROUS INPUT

w
w

w
.sxc.h

u

Secure ProgrammingSYSADMIN

66 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

67

lent scripts run on the victim’s machine
while the victim’s browser is surfing a
different site. The script runs in the con-
text and with the privileges of the site
the browser is currently rendering (Fig-
ure 1).

Unfriendly Guestbook
In a simple guestbook, users are allowed
to compose short entries which are then
published on the hosting website. If the
people behind the website allow arbi-
trary input, a malevolent hacker might
hide a script in their entry that pops up
an ad in the visitor’s browser:

Nice page. Good work!
<!-- <script>
 window.openU
 ("http://debian.org/");
</script> -->

Now this might sound harmless, but
depending on the website, attackers
might have something more nasty up
their sleeves. For instance, they might
deface the page, steal cookies with ses-
sion IDs and assume the identity of the
user, or use fake websites to phish for
other people’s passwords.

The stakes are particularly high on
pages that have something to do with
money: banks sites or online casinos,
for example. The Secure Programming
Cookbook devotes a whole chapter to
this topic and provides numerous exam-
ples.

What allows cross-site scripting to
happen is the lack of user input valida-
tion. Web developers often overlook the
importance of this issue, just because

nobody happens to have attacked their
web server so far. The web server is just
the intermediary that passes on the
exploit as is to the user without being
harmed itself. The same thing applies to
cross-site authentication attacks. (See
the article in this issue titled “Strange
Phishing: Stopping the cross-site authen-
tication attack.”)

Countermeasures
Cross-Site scripting may be widespread,
but it is fairly easy to combat. A secure
application would first remove any script
from the input, or simply reject any
dubious offerings point blank. If you are
dealing with HTML, any script will be
enclosed in formating tags, that is,
between angled brackets <...>. A bru-
tal but effective approach would be to
convert any meta-characters to a harm-
less HTML encoding before continuing
processing (see Table 1).

But if you would like to give your visi-
tors an opportunity to use simple mark-
ups, this option is not open to you.
Javascript code can hide more or less
anywhere, in the , <div ...>
or <body...> tags, for example. Check
out [1] for several examples.

Blacklisting is not an option, but
whitelisting might prove more effective.
The idea behind whitelisting is to just
leave the HTML tags that are known to
be harmless, and to reject everything
else as potentially malevolent, including
any tags with attributes. For example,
the tags in Table 2 are harmless.

If this approach to the problem of
cross-site scripting does not give you
enough freedom, you might like to pass

the problem on to your developers, or to
read a few books on the subject [1] [2].

Tag Filtering
An approach for C and C++: The Gate
Guardian [3] library gives developers a
useful way of avoiding trouble. The
inputg_escape_html() function escapes
the HTML meta-characters <>"& as
<, >, ", and &, but leaves
harmless tags such as <h1> or

as is. Script-free links such as are left unchanged.
The call looks like this:

#include <inputguardian.c>
[...]
char *escaped;
escaped = U
inputg_escape_html(input);

The function returns a pointer to the
modified HTML document, which points
to a memory area allocated by a call to
malloc(), which the developer will need
to free later with a call to free(escaped).
The function will return a null pointer if
you forget the memory allocation.

Masked Ball
The inputg_escape_all_html() variant
converts all HTML meta-characters to

Character HTML Encoding
< <
> >
& &
" "

Table 1: HTML
Meta-Characters

01 #include "inputguardian.c"

02 #include <stdio.h>

03

04 int main(int argc, char
**argv)

05 {

06 char *ret = inputg_escape_
html(argv[1]);

07 if (ret != 0)

08 printf("%s", ret);

09 return !ret;

10 }

Listing 1: escape-html.c

SYSADMINSecure Programming

67ISSUE 60 NOVEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

Figure 1: The attacker injects a malevolent script into a forum posting (1), and the server

stores the entry (2). Some time later, a user visits the forum (3); the server puts the Website

framework (4a) and the database entries together (4b) and serves the page up to the visitor

(5). The browser then runs the script (cross-site scripting).

 Client-side browser

Cool!
<!−− <script>
 malevolent script
</script> −−>

Hi folks!

</script> −−>

 malevolent
 script

<!−− <script>
Cool!

Welcome to
the forum!

Welcome to
the forum!

Insert your posts

Attacking browser Website with forum

(4b) (4a)

Web page returned

 Forum Website
Database

Forum entry

(2)
(3) GET "forum..."
(5) Site with script

(1) POST

harmless entity encoding without excep-
tions. inputg_escape_html_with_tag_
table() allows users to define the list of
permissible tags themselves.

Be careful, though: the Gate Guardian
functions are taken from spc_escape_
html() in the Secure Programming Cook-
book [4], but the original is, unfortu-
nately, riddled with bugs. As a replace-
ment for the faulty code, you might like
to check out my archive with corrected
versions at [5]. New bugfixes have
arrived since Part 3 went to press, so if
you use this archive, you might like to
download the latest version.

An approach for the shell: The sim-
plest approach is a small wrapper that
uses the Gate Guardian function.
Admins can then call the escape-html
program in Listing 1 by calling
ESCAPED=`escape-html "$INPUT"` from
their own shell scripts.

Case 2: Email Addresses
Administrative scripts or programs often
expect input in the form of email
addresses. Admins typically specify
the addresses themselves, for example,
if they need a script to give them a
detailed update on what has been going
on. In other cases, users specify the mail
addresses, as in a bug report form, for

example. Unless you happen to be devel-
oping a mail client or mail server, you
might not bother validating the address
input. But it pays to be paranoid!

RFC 2822 [6] and its predecessors pre-
cisely define what an address needs to
look like. The new standard stipulates
that mail programs must be able to pro-
cess older address formats. The aim is to
support continued use of older pro-
grams. In a do-it-yourself form, admins
can do without extra bits such as routes
in mail addresses and so on (<Route:
Address>). A lesser known fact is that
mail addresses can include nested com-
ments.

No Nonsense Approach
In most cases, shell programmers can
just squash this problem with a no non-
sense approach. Anything that fits into
the Name@Domain pattern gets
through, anything else doesn’t. You can
also restrict the valid character set for
the name and domain entries, and you
can call egrep to back you up:

echo "$ADDR" | U
egrep '^[a-zA-Z0-9_+-.]+??
@[a-zA-Z0-9-]+U
(\.[a-zA-Z0-9-]+)*$' || ??
exit 1

If this approach lacks the kind of ele-
gance you prefer, check out Jeffrey
Friedl’s Regex book Mastering Regular
Expressions [7] for an elegant regular
expression that will cover the complete
RFC, with the exception of nested com-
ments.

A Perl program that uses this expres-
sion to validate mail addresses is avail-
able at [8]. It is quite easy to use:

perl email-opt.pl U
"$ADDR" >/dev/null || exit 1

A good approach for C and C++ pro-
grammers is to use the Gate Guardian
inputg_is_simple_email_address() func-
tion to implement a no nonsense egrep
test in C:

#include <inputguardian.c>
[...]
int rc;
rc = U
inputg_is_simple_email_addressU
(addr)
if (rc == 0)
 exit(1);

It is not a good idea to try to implement
the more precise Perl program in C or
C++, because complex parsing can
easily lead to errors or unwanted side-
effects. The best idea in this situation
would be to use a ready-made parser or
call the Perl script as an external pro-
gram.

Case 3: Buffer Overflows
Buffer overflows are closely related to
format strings and have been around a
lot longer. In both cases, the stack is the

abbr acronym b bdo big blink
blockquote br center cite code dd
del dfn dir dl dt em
h1 h2 h3 h4 h5 h6
hr i ins kbd li menu
nobr ol p plaintext pre q
s samp small spacer strike strong
sub sup tt u ul var

Table 2: Script-free HTML Tags

Figure 2a: The Scbuilder UI is a front-end for Libshellcode. Thanks to

the UI, anyone can create lean and fast shell code for almost any kind

of application.

Figure 2b: If needed, Scbuilder can store the resulting shell code as C

program code. The admin can no longer accept excuses such as “the

vulnerability is hard to exploit” for overflows.

Secure ProgrammingSYSADMIN

68 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

“If you use Linux, you
need Linux Magazine!”

WWW.LINUX-MAGAZINE.COM/SUBS
lmi_subs_06_05.indd 3 15.09.2005 18:40:03 Uhr

major (but not the only) objective tar-
geted by malevolent hackers. A buffer
overflow occurs when a program
attempts to write data to a memory area
(buffer) that is too small to store that
data. This attempt leads to the program
overwriting memory addresses that have
been allocated to other tasks.

Shell Code
Things start to turn nasty when our
hacker, Fred, injects executable code into
the buffer. The code typically just
launches a shell: execve("/bin/sh", 0,
0);, allowing Fred to hijack the vulnera-
ble user account. It is by no means easy
to write shell code, but script kiddies
very rarely need to do so. Instead, they
turn to libraries such as Libshellcode.
The library comes with a small Ncurses
UI titled Scbuilder (Figures 2a and 2b).

Attacks on program logic are more
subtle and very hard to prevent; as an
example, Fred might attempt to over-
write other local variables stored at
higher memory addresses. In our exam-
ple, this would mean overwriting the len
variable or the variables used by the
calling function. In real life scenarios,
hackers have managed to hijack remote
systems simply by overwriting variables
containing the UID that a program want-
ing to drop privileges changed to. For
more details on buffer overflows see [9].

Roots
Memory overflows always involve pro-
gram code reading, writing, and copying

data. The C source code typically has a
string function (strcat(), strcpy()…), a
function for formatted input and output
(sprintf(), scanf()…), a file access func-
tion (fread(), gets()…), or inaccurate
pointer arithmetic.

A call to gets() is nearly always a bad
idea: the developer can’t tell the function
how much memory has been allocated.
In other words, gets comes with a built
in buffer overflow. But scanf(input,
"%s", buffer) is not much better: scanf
stores a string that it parses in a buffer
no matter how big the buffer is. Table 3
shows you a better approach.

Listing 2 shows a common error in file
name handling. The call to getcwd() in
line 9 stores the working directory path
in the abs_path variable. So far, so good,
because the buffer is big enough. But in
line 10, strcat() fails to check if the buf-
fer is full, and it might just carry on writ-
ing outside the buffer’s boundaries. A
path longer than PATH_MAX is another
source of danger (depending on your file
system type). The program should detect
this error (return value of ERANGE) and
handle the situation gracefully.

Make Way!
C and C++ programmers need to either
use dynamic memory allocation to
ensure that enough memory is available,
or restrict the length of myinput to the
amount of space they have. The latter
approach is often preferable for smaller
programs, as it is easier to implement.
Table 3 shows you the secure variants of
some standard library functions.

C++ developers should avoid the vul-
nerable functions and use the std::string
string class, as well as the << and >>
stream operators.

Keep It Simple
The diversity and complexity of the
issues described here may have given

you some idea of how difficult in can be
to separate harmless input from malevo-
lent input. The problem of secure
programming brings to mind an old
adage that is often quoted by successful
admins and software developers: keep it
simple.

Occasional programmers typically do
not have enough time to plum the
depths of formats and their complexities.
If this sounds like you, you should be
looking to allow a subset of all permissi-
ble input and just ditch the rest.

 The strategies described in this article
will give you a headstart on writing safe
and sensible code. Always protect your
program input, and you'll put the bad
apples firmly where they belong: in the
trash can. ■

01 #include <limits.h>

02 #include <string.h>

03 #include <unistd.h>

04

05 int main(void)

06 {

07 char abs_path[PATH_MAX];

08

09 getcwd(abs_path, PATH_MAX);

10 strcat(abs_path, "/
filename");

11 /* ... */

12

13 return 0;

14 }

Listing 2: path_max.c

Secure ProgrammingSYSADMIN

70 ISSUE 60 NOVEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

Dipl.-Math. Dominik Vogt is an expe-
rienced software developer and sys-
tem administrator. At present, he is
working as a freelance IT consultant
and specializing in software secu-
rity. On his leisure time, Dominik
enjoys tinkering with the Fvwm win-
dow manager.T

H
E

 A
U

T
H

O
R

[1] David A. Wheeler, “Secure Programs
HOWTO”: http:// www. dwheeler. com/
secure-programs/

[2] Sverre H. Huseby, Innocent Code:
Wiley, ISBN 0-470-85744-7

[3] Dominik Vogt, Gate Guardian:
http:// sourceforge. net/ projects/
gateguardian/

[4] Viega and Messier, Secure
Programming Cookbook, O’Reilly,
ISBN 0-596-00394-3:
http:// www. secureprogramming. com

[5] Source code for the Secure
Programming Cookbook:
http:// www. dominikvogt. de/ de/ index.
html#Links (in German)

[6] RFC 2822, “Internet Message
Format”:
http:// www. ietf. org/ rfc/ rfc2822. txt

[7] Jeffrey E. F. Friedl, Mastering Regular
Expressions, O’Reilly,
ISBN 0-596-00289-0: http:// www.
oreilly. com/ catalog/ regex2/

[8] Sample scripts from the regex book:
http:// examples. oreilly. com/ regex/

[9] Aleph One, “Smashing The Stack For
Fun And Profit”, Phrack Vol. 7, Issue
49, File 14: http:// www. phrack. org/
show. php?p=49&a=14

INFO

Wrong Right
sprintf(buf, "%s", str) sprintf(buf, "%99s",

str) or snprintf(buf,
100, "%s", str)

scanf("%s", str) scanf("%99s", str)
gets(buf) fgets(buf, 100, stdin)
strcat(buf, str) strncat(buf, str, 99)
strcpy(buf, str) strncpy(buf, str, 99);

buf[99] = 0;

Table 3: Avoiding Buffer
Overflows

