
61

COVER STORYSchlagwort sollte hier stehen

Incoming TCP connections do not always end up where they

are supposed to. A freely configurable redirector points digi-

tal debris in the direction of a new and better place.

BY CHARLY KÜHNAST

The Sysadmin’s Daily Grind: Portfwd

NEW DIRECTIONS

T
H

E
 A

U
T

H
O

R

Charly Kühnast is a
Unix System Man-
ager at the data-cen-
ter in Moers, near
Germany’s famous
River Rhine. His
tasks include ensur-
ing firewall security
and availability and taking care of
the DMZ (demilitarized zone).

Admin Workshop: X Window . . 62
The X Window system.

TCP Hijacking 66
Preventing TCP attacks.

SYSADMIN

[1] Charly Kühnast, “The Sysadmin’s
Daily Grind: Rinetd”: Linux Magazine
11/ 02, p. 51.

[2] Portfwd: http:// portfwd. sf. net

INFO

Just a little while back we dis-
cussed Rinetd [1], a TCP redi-
rector. Rinetd is lean, reliable,

and easy to configure; on the downside,
it lacks some advanced features. This
month I’ll examine Portfwd, a tool that
includes some of those features missing
from Rinetd. Portfwd (Port Forwarding
Daemon, [2]) takes the form of a 116K
tarball, which you can build and install
in the normal way:

./configure; make; make install

or almost. The all-important binary went
into hiding in the src directory after I
typed make install. A symlink (ln -s
/usr/local/portfwd-0.27/src/portfwd/usr/
bin/portfwd) took care of that.

No Sweat
Let’s first check how Portfwd handles
simple redirection. We want to forward
any TCP packets that arrive via port 80
to the server at 10.20.30.40. The con fig-
uration file looks like this:

user nobody
group nobody
tcp { 80 { => 10.20.30.40:80 } }

The external curly braces contain the
port where Portfwd receives the incom-
ing connection, and the internal braces
take care of the redirection target. Of
course, good old Rinetd could have

handled this too. But, I found
I was able to configure multi-
ple targets to use Portfwd as
a simple round-robin load
balancer. I changed the first
example to forward incoming
connections on port 80 to
two servers, 10.20.30.40 and
10.20.30.41, like this:

tcp { 80 { =>
10.20.30.40:80,

10.20.30.41:80 } }

If my machine is multi-homed, I can use
bind-adress to specify the interface I
mean. For my third experiment, I
assigned the addresses 192.168.1.1 and
192.168.1.2 to my machine. I want to
beam any incoming connections for port
25 to two other mail servers:

bind-address 192.168.1.1
tcp { 25 { => 10.20.30.40:25 } }

bind-address 192.168.1.2
tcp { 25 { => 10.20.30.41:25 } }

In contrast to Rinetd, Portfwd not only
forwards TCP connections but also UDP
datagrams. The following rule tells Port-
fwd to accept DNS requests and forward
those requests to the server at dns.
example.com:

udp { 53 { => U
dns.example.com:53 } }

Fragile
Portfwd also gives me the ability to
define a special case for servers with
connections that tend to break quite

often. The fragile keyword
tells Portfwd to be lenient in case of con-
nection errors – and to retry more often
than usual:

fragile tcp { 80 { => U
dialup.example.com:8080 } }

This is the kind of setup I like to use
when I want a central machine to look
like a function-loaded monster from the
outside, although I actually offload
much of this functionality onto separate
machines as needs dictate. ■

SYSADMINCharly's Column

61ISSUE 57 AUGUST 2005W W W. L I N U X- M A G A Z I N E . C O M

