
72

When it comes to handling XML
documents, Perl certainly
sticks to its motto: “There is

more than one way to do it.” The Perl
community really has developed many
useful modules for handling XML. In
this article, I will examine the different
approaches these various Perl modules
take to handling XML-based data. I'll
start by considering the case of the
example data shown in Figure 1. The file
shown in Figure 1 contains two records
of type <cd> within a <result> tag.
Each of these XML records within the
file consists of tags for the <artists>
and <title> of a CD, where <artists>

can include one or multiple <artist>
tags.

Keep It Simple
The easiest way to parse XML in Perl is
to use the XML::Simple Perl module
from CPAN. The XML::Simple module
exports the XMLin function, which reads
a file or string with XML data and stores
the data as a Perl data structure, as fol-
lows:

use XML::Simple;
my $ref = XMLin("data.xml");

Figure 2 shows a dump of the resulting
data structure in $ref. You may have
noticed two things: depending on the
number of artists in <artists>, the
resulting data structure is either a scalar
or an array. This would make things dif-
ficult later. However, you can specify the
ForceArray option to ensure that the field
will be represented by an array. Calling
XMLin("data.xml", ForceArray =>
['artist']); ensures that $ref->{cd}->[0]
->{artists}->{artist} will always return
a reference to an array, even if there is
only one artist in the source.

Figure 1: The XML sample data is a subset of

a CD archive.

01 #!/usr/bin/perl -w

02 use strict;

03 use XML::LibXML;

04

 05 my $x = XML::LibXML->new()

06 or die "new failed";

07

 08 my $d =

09 $x->parse_file("data.xml")

10 or die "parse failed";

11

 12 my $titles =

13 "/result/cd/title/text()";

14

 15 for my $title (

16 $d->findnodes($titles)) {

17 print $title->toString(),

18 "\n";

19 }

Listing 1: xptitles

Comparing Perl XML parsers

SPOILED
FOR CHOICE

XML is one of today’s most popular data exchange formats. Perl has a

huge collection of methods for handling XML. This month’s Perl column

discusses the pros and cons of the most common XML modules to help

you choose the best tool for your job. BY MICHAEL SCHILLI

Perl: XML parsersPROGRAMMING

72 ISSUE 58 SEPTEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

73

Additionally, ->{artists}->{artist} is
a bit clumsy, as ->{artists} does not
have any subelements, apart from
->{artist}. XML::Simple has a Group-
Tags option that allows developers to
collapse hierarchies.

The following code:

XMLin("data.xml",
 ForceArray => ['artist'],
 GroupTags =>
 {'artists' => 'artist'});

creates the data structure shown in Fig-
ure 3, which is quite easy to handle. For
example, you could use a simple For
loop to find serial numbers:

for my $cd (@{$ref->{cd}}) {
 print $cd->U
 {serial}, "\n";
}

XML::Simple parses the complete XML
file into main memory, which is useful
for small files. If you have a large XML
file, however, this approach may be inef-
ficient, or it could even cause the pro-
gram to run out of memory.

Twisted Paths
If you are a fan of terse notation, you
will love using XPath to navigate the
XML jungle. The XML::LibXML module
from CPAN relies on the Gnome project’s
libxml2 library and offers developers the
findnodes method for accessing XML
elements using XPath notation.

For example, the Xpath notation for
retrieving the text content of all <title>
elements is /result/cd/title/text(): this

starts at the document root, /, climbs
down into the <results>, <cd>, and
<title> elements, before using text() to
retrieve the text content. Alternatively,
you could simply specify //title/text() to
tell XPath to locate all <title> elements
no matter the level at which they are
located in the XML hierarchy. xptitles in
Listing 1 shows that the findnodes()
method returns a series of text objects,
whose toString() method finally gives us
the title text.

XPath is quite capable of handling
more complex tasks: Listing 2 retrieves
the serial numbers of all CDs that have
an <artist> tag enclosing the text "Foo
Fighters". To retrieve these serial num-
bers, /result/cd/artists/artist[.="Foo
Fighters"]/../../@serial first climbs down
to the <artist> tags, and then checks
each of the the <artist> tags for the
[.="Foo Fighters"] predicate. It uses .,
the current node in the path, and checks
if its value is identical to the search
string, Foo Fighters. If so, XPath then
climbs back up two levels using ../...
This higher level is where the <cd> tag
lives; its serial parameter is then read,
using @serial, and returned.

Listing 2 (xpserial) shows the entire
script, which ultimately calls the
returned object’s value() method to
retrieve the text value of the serial num-
ber.

XPath offers a compact notation, but if
things don’t work the first time around,
troubleshooting can be a pain. This said,
the combination of Perl and XPath
makes up for many a disadvantage, as it
supports a useful mix of quick XPath
hacks, solid program logic, and excellent
debugging abilities. Compared to that,
using a simple XSLT processor can be a

pain.

XML::Parser
The XML::Parser module implements
more of a classical parser. It nibbles its
way through the XML document, tag by
tag, and calls user-definable callbacks
when specific conditions apply. To find
the serial numbers of all CDs where the
artist tag contains “Foo Fighters,” the
code needs to keep track of the parser
state while the parser traverses down the
XML hierarchy.

As xmlparse in Listing 3 shows, the
XML::Parser constructor new() expects
callbacks for events such as Start (when
the parser finds an opening XML tag) or
Char (when the parser finds text
between markups.)

When the parser finds an opening tag,
such as <cd serial="001">, it calls the
start() function, with a reference to the
parser, the tag name, and a key/ value
attribute list. In our example, the start()
function is passed the "cd" string as its

Figure 2: This is the data structure that

XML::Simple uses to store the sample data.

Figure 3: GroupTags-based XML data-struc-

ture with XML::Simple.

01 #!/usr/bin/perl -w

02 use strict;

03 use XML::LibXML;

04

 05 my $x = XML::LibXML->new()

06 or die "new failed";

07

 08 my $d =

09 $x->parse_file("data.xml")

10 or die "parse failed";

11

 12 my $serials = q{

13 /result/cd/artists/

14 artist[.="Foo Fighters"]/

15 ../../@serial

16 };

17

 18 for my $serial (

19 $d->findnodes($serials)) {

20 print $serial->value(),

21 "\n";

22 }

Listing 2: xpserial

PROGRAMMINGPerl: XML parsers

73ISSUE 58 SEPTEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

second parameter; the third and fourth
parameters are "serial" and "001".

The text() callback defined in line 29
ff. receives two parameters from XML::
Parser when it finds a text element: a
reference to the parser and the string
containing the text.

For the parser to know whether a
piece of text it has found contains an art-
ist’s name (and not some other string), it
needs to check if it is currently inside an
<artist> tag. The only way for the
parser to find out is to check if the $is_
artist global variable has been set to a
true value by the start callback. The
$serial global variable uses the same
approach to pass the serial number,
which start finds in the serial attribute
of the <cd> tag. This allows the print
function inside the text() callback to
output the serial number of the CD cur-
rently being investigated. This approach

assumes that every CD actually has a
<serial> attribute, but you could easily
validate this using a DTD, for example.

The XML::Parser module is not nor-
mally used directly, but as the base class
of user-defined classes. In fact, XML::
Simple, which we looked at earlier, may
use XML::Parser, depending on your
installation environment, and can easily
be talked into using the module if you
specify $XML::Simple::PREFERRED_
PARSER = "XML::Parser";.

If you are working on a difficult plat-
form, “XML::SAX::PurePerl”, another
CPAN parser, could be an option,
although it won’t be the quickest. It

can be installed without a C compiler.
Installing XML::Parser can take a while,
as it requires you to have a working
expat parser installation.

To avoid all that work, you could
simply misuse another module from
CPAN, HTML::Parser, for XML-related
chores. Its syntax is only slightly differ-
ent, and you can stipulate xml_mode to
switch from loose HTML interpretation
to the stricter world of XML.

Wrong Tools, Right Results
If you look at the htmlparse in Listing 4,
you will note that the HTML::Parser con-
structor expects a slightly different syn-
tax than XML::Parser. After specifying
which API version you are using, the
start_h and text_h parameters set the
callbacks for opening tags and text con-
tent outside of the XML markup. The
constructor also specifies which parame-
ters the parser should hand to the call-
backs: start() will be passed the name of
the opening tag and an attribute list (as
a reference to an array in this case), but
the function text() is simply handed
whatever text has been found.

Do the Twig
XML::Twig by Michel Rodriguez pro-
vides amazingly effective mapping of
XML to data structures in Perl code. It
can handle enormous documents where
XML::Simple would simply run and
hide; to do so, it parses each document
piece by piece rather than attempting to
load the whole document into memory.

XML::Twig has so many different XML
navigation methods that it can be hard
to find the most suitable method for a
job in hand. The twig script (see Listing

01 #!/usr/bin/perl -w

02 use strict;

03 use XML::Parser;

04

 05 my $p = XML::Parser->new();

06 $p->setHandlers(

07 Start => \&start,

08 Char => \&text,

09);

10 $p->parsefile("data.xml");

11

 12 my $serial;

13 my $is_artist;

14

 15 #############################

16 sub start {

17 #############################

18 my ($p, $tag, %attrs) = @_;

19

 20 if ($tag eq "cd") {

21 $serial = $attrs{serial};

22 }

23

 24 $is_artist =

25 ($tag eq "artist");

26 }

27

 28 #############################

29 sub text {

30 #############################

31 my ($p, $text) = @_;

32

 33 if ($is_artist and

34 $text eq

35 "Foo Fighters") {

36 print "$serial\n";

37 }

38 }

Listing 3: xmlparse

Figure 4: twigfilter outputting the modified

XML.

Figure 5: XPath queries in the interactive xsh shell.

Perl: XML parsersPROGRAMMING

74 ISSUE 58 SEPTEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

5) calls the XML::Twig::new constructor
with the Twighandlers parameter, which
maps the XML path /result/cd/artists
/artist to the artist handler defined in
line 15. Whenever XML::Twig stumbles
across an <artist> tag while parsing an

XML document, it calls the artist
function with two parameters. The first
one is an XML::Twig object and the
second an XML::Twig::Elt object
(apparently Elt is short for element).
The latter represents the node in the

XML tree to which the <artist> tag is
attached.

The XML::Twig::Elt object’s text()
method gives us the text between the
opening and closing <artist> tags. If
this happens to be "Foo Fighters", lines

01 #!/usr/bin/perl -w

02 use strict;

03 use HTML::Parser;

04

 05 my $p = HTML::Parser->new(

06 api_version => 3,

07 start_h => [

08 \&start, "tagname, attr"

09],

10 text_h =>

11 [\&text, "dtext"],

12 xml_mode => 1,

13);

14

 15 $p->parse_file("data.xml")

16 or die "Cannot parse";

17

 18 my $serial;

19 my $artist;

20

 21 #############################

22 sub start {

23 #############################

24 my ($tag, $attrs) = @_;

25

 26 if ($tag eq "cd") {

27 $serial =

28 $attrs->{serial};

29 }

30

 31 $artist =

32 ($tag eq "artist");

33 }

34

 35 #############################

36 sub text {

37 #############################

38 my ($text) = @_;

39

 40 if ($artist and

41 $text eq

42 "Foo Fighters") {

43 print "$serial\n";

44 }

45 }

Listing 4: htmlparse

Advertisment

PROGRAMMINGPerl: XML parsers

75ISSUE 58 SEPTEMBER 2005W W W. L I N U X- M A G A Z I N E . C O M

22 and 23 navigate to the superordinate
<cd> tag by calling the parent()
method twice. The CD object found in
this way can be queried for the value of
the serial attribute using the att()
method; the value can then be printed.

After an <artist> tag has been pro-
cessed, line 31 calls the XML Twig
object’s purge() method to tell Twig that
the tree up to the tag currently being
processed is no longer needed, and that
this part of the tree can be released.
XML::Twig is intelligent enough not to
remove the direct parents of the tag it is
currently processing, but it will trash any
siblings that it has already processed.
This kind of memory management does
not make much sense for a short piece of
XML, but it may make sense if you need
to handle an enormous document.

XML::Twig not only has elegant XML
navigational features; a script can also
rename tags, call methods to dynami-
cally change the tree, or even drop parts
to save memory. For example, to convert
the cd tag's serial='xxx' attribute from
<cd serial="xxx"> ... </cd> to the
more verbose <cd><id>xxx</id> ...
</cd> notation, and at the same time
remove the artist information, the twig-
filter script (Listing 6) first uses root() to
retrieve the root object (<results>). The
children() method then returns all the
child objects for the root object, that is
the cd elements. The att_to_field()
method then transforms the cd element’s
serial attributes to id field elements.

Then, first_child() retrieves the first
(and only) artist element; and the ele-
ment’s own delete() method destructs
the node and removes it from the tree.

Finally, the set_gi() method (gi stands
for generic identifier) renames the cd
object of the <cd> tag which has just
been parsed to Compact Disc. Figure 4
shows you the results.

Since we set the PrettyPrint parameter
for the constructor to “indented,” the
print() method called in line 23 gives us
a neatly indented results tree as output.

XML::Twig gives developers the ability
to write unbelievably compact programs;
it just takes a bit of practice to find the
right methods.

XML::XSH
If you prefer an interactive approach,
you might like to try the XML::XSH mod-

ule’s xsh-shell. Calling xsh opens a com-
mand interpreter that allows you to read
XML documents on disk, or retrieve
XML documents off the web. You can
then shoot arbitrarily complex XPath
requests at the document. The results
of these requests are immediately dis-
played in the command line window,
allowing you to continuously improve
your queries.

Figure 5 on p74 shows the shell user
loading the XML document from disk by
entering open docA = "data.xml",
before going on to type ls to issue an
XPath query. The result of this XPath
query is output as a single serial num-
ber: serial='002'.

The scripts discussed in this article
are just a few hand-picked examples of
the kinds of scripts you can build with
the huge collection of XML modules
available from CPAN. XML::XPath,
XML::DOM, XML::Mini, XML::SAX, and
XML::Grove are more examples of the
infinite options Perl programmers have
for digging into XML. ■

01 #!/usr/bin/perl -w

02 use strict;

03 use XML::Twig;

04

 05 my $twig =

06 XML::Twig->new(

07 PrettyPrint => "indented");

08

 09 $twig->parsefile("data.xml")

10 or die "Parse error";

11

 12 my $root = $twig->root();

13

 14 for my $cd (

15 $root->children('cd')) {

16 $cd->att_to_field(

17 'serial', 'id');

18 $cd->first_child('artists')

19 ->delete();

20 $cd->set_gi("CompactDisc");

21 }

22

 23 $root->print();

Listing 6: twigfilter

[1] Listings for this article: http:// www.
linux-magazine. com/ Magazine/
Downloads/ 58/ Perl

[2] XML::Twig tutorial: http:// www.
xmltwig. com/ xmltwig/ tutorial/ index.
html

INFO

01 #!/usr/bin/perl -w

02 use strict;

03 use XML::Twig;

04

 05 my $twig = XML::Twig->new(

06 TwigHandlers => {

07 "/result/cd/artists/artist"

08 => \&artist

09 }

10);

11

 12 $twig->parsefile("data.xml");

13

 14 #############################

15 sub artist {

16 #############################

17 my ($t, $artist) = @_;

18

 19 if ($artist->text() eq

20 "Foo Fighters") {

21 my $cd =

22 $artist->parent()

23 ->parent();

24

 25 print $cd->att('serial'),

26 "\n";

27 }

28

 29 # Release memory of processed
tree

30 # up to here

31 $t->purge();

32 }

Listing 5: twig

Perl: XML parsersPROGRAMMING

76 ISSUE 58 SEPTEMBER 2005 W W W. L I N U X- M A G A Z I N E . C O M

