
30

Running Windows Programs with the Wine API

PRACTICAL WINE

The Wine compatibility layer lets Linux users run Windows programs.

Unfortunately, configuring Wine is anything but trivial, and it helps if you

enjoy experimenting. BY JOACHIM VON THADDEN

Linux offers a number of options
for users who need to run an
occasional Windows program.

You can emulate a complete machine
using an application such as VMware or
Qemu, or you can simulate a machine
subset with Win4Lin. These solutions
work quite well but also have some
drawbacks: for one thing, users need to
buy both the emulation environment
and the operating system, both of which
take up valuable space on the host
machine. Emulation also taxes perfor-
mance and soaks up memory. An aver-
age program running in an emulator will

achieve just 50 to 80 percent of its nor-
mal native performance, even with
increased static RAM memory use by the
guest operating system.

An alternative to emulation is simply
to provide Windows libraries for the
Linux system. In theory, this approach
would allow the program to run in
Linux. Unfortunately, this approach is
complicated. First, the Windows library
functions, or so called API (Application
Programming Interface), is not ade-
quately documented. And in many
cases, programs written by Microsoft, in
particular, call undocumented functions.

As there is a lot of redundancy in the
API, one might suspect that Microsoft
has actually lost track of the many thou-
sands of system calls and their extremely
complex calling parameters. Addition-
ally, some functions are tailored to suit
the Windows environment and make
many assumptions about the underlying
system. For example, the Linux filesys-
tem is massively different from the Win-
dows filesystem. To mitigate this issue, it
would be useful to have the ability to
use the original Windows libraries. Of
course, this means owning a Windows
license, but most people have one any-

WineCOVER STORY

30 ISSUE 57 AUGUST 2005 W W W. L I N U X- M A G A Z I N E . C O M

31

way, so why not do something useful
with it?

The open source Wine project pro-
vides programming functionality and
also integrates original libraries. The
recursive acronym “Wine,” which stands
for “Wine is not an emulator,” expresses
what Wine truly is: not an operating sys-
tem emulator, but a compatibility layer.
After a long development period, and
with support from commercial enter-
prises, Wine has now reached a stage of
development that allows users to run an
amazingly large number of Windows
programs on Linux. This article takes a
practical look at how to use Wine.

Installing Wine
As Wine is subject to rapid development
cycles, the version you use is critical. It
does not make much sense to go for the
latest version; in fact, I would suggest
adopting a conservative approach and
keeping a working version. Restrict
experiments with new systems.

The Wine version that I use myself,
20041019, is not the latest. Wine pack-

ages always use the release date as their
version number. The October 2004
release is extremely stable and gives me
all the functionality I need. The versions
released since then have been highly
experimental and do not lend them-
selves to productive use. The latest ver-
sion at this time of writing, 20050419,
looks more promising, but it refuses to
cooperate with Microsoft Word.

Fortunately, installing Wine is now
child’s play. Long-winded build and
install processes are a thing of the past
for most distributions, as the official
Wine Site has matching, and well main-
tained, packages for Suse, Red Hat,
Fedora, Debian, Mandrake, Slackware,
and even FreeBSD [1]. Older packages
are also available [2]. After downloading
the package, users with RPM-based dis-
tributions can simply become root and
give the following command

rpm -Uvh wine-200xxxxx-*

to install Wine on their systems. If a pre-
vious version gets in the way of the

install, typing rpm -e wine should
remove the offending version. On
Fedora, the Prelink security mechanism,
which stores prelinked versions of all
system libraries, can cause a few issues.
If you do not want to disable Prelink
completely, first become root, and then,
after installing Wine, delete the pre-
linked libraries as follows:

killall prelink;prelink -uav; U
rm /etc/prelink.cache; ldconfig

As Fedora’s Prelinking mechanism
checks the libraries every 24 hours, the
system will be returned to a safe state
after 24 hours at the latest. If you are in
a hurry, you can call the prelink cron
script to reenable the mechanism:

killall prelink;U
/etc/cron.daily/prelink

The Wine packages supplied with
Debian have gained a certain degree of
notoriety for being poorly maintained
and highly unpredictable. Debian users
will want to deinstall any Wine packages
they discover, then change repository
and install the original packages from
Wine headquarters, as described at [3].

At the Wine Lodge – Wine’s
Directory System
Wine stores a user’s configuration and
working files along with that user’s Win-
dows programs below the user directory
in the .wine subdirectory. Be careful if
you log on as root. Just as Linux system
users should only log on as root to per-
form administrative chores, Wine users
should never use privileged accounts.
For one thing, Windows programs are
not exactly renowned for their security
and might compromise your system: for
another, system calls that might other-
wise fail could work for the root user,
and this makes program behavior unpre-
dictable.

You will need a new Wine directory to
complete the installation steps; if you
have a pre-existing Wine directory, you
should rename it just to be on the safe

Figure 1: The rewards – complex Windows programs like Microsoft Word show good perfor-

mance on Linux.

Advertisment

COVER STORYWine

side. Initializing a new directory is quite
simple; just type wine at the console.
This places the config configuration file,
and the Windows registry database,
which will store files with the reg suffix,
directly below the ~/.wine directory.
More recent Wine versions do not create
a config file. The following command:

cp /usr/share/doc/wine-U
20041019/samples/config ~/U
.wine

copies a template file. Incidentally, Wine
does not support the original Windows
Registry file. Instead, Wine uses a clear-
text format, storing the system and user
Registry hives in the system.reg and user.
reg files. As programs do not typically
access the Registry directly, but take the
recommended approach via system calls,
this is a good way of making the Registry
database easier for humans and
machines to read and modify.

Wine uses links below the ~/.wine/
dosdevices directory to provide the drive
letters that Windows expects. The links
have exactly the names that Windows
programs expect of drive letters, that is,
c:, d: and so on. Thus, the c subdirectory
maps the Windows C: drive within the
Linux filesystem tree, and this is where
the beginnings of a typical collection
of Windows files and subdirectories
appears when you launch Wine for the
first time. c/windows has a few symbolic
links to programs such as regedit.exe or
notepad.exe; these programs are part of
the Wine package and should work
without any additional configuration.
To test this, let’s call

wine notepad

This should launch our first program on
Wine. Some Wine packages install these
programs as hard links in the Linux file-
system tree, allowing users to simply call
Notepad to launch the application.

Simple Configuration
The config file handles the Wine config-
uration. The structure of the config file is
quite simple; just like a Windows .ini
file, the config file comprises group
names in square brackets, followed by
"Key" = "Value" pairs. In contrast to
Windows, both keys and values need to
be quoted, and comments are indicated
by semicolons. The group order is not
important.

The [wine] group (Listing 1) contains
a number of basic parameters that gov-
ern the filesystem structure and access
to the Linux system resources. You might
like to set the "ShowDirSymlinks" and
"ShowDotFiles" parameters to 1 here, to
allow Windows file displays to show you
all the files on your Linux system. For
example, hiding symlinks can mean
wasting a lot of time searching for files.
You can leave all the other parameters as
is.

The [Version] section in Listing 2
allows users to modify the behavior of
the Wine libraries. The "Windows" key
can assume almost any value you like
for Windows versions between Windows
3.0 and the latest Windows 2003. And
this is important for a number of appli-
cations. However, most applications will
run best if you select "win98" for this
parameter. Also, this Windows 98 ver-

sion setting is the setting for which the
Wine API has the most functionality.

The most powerful switch-box is
located below [DllOverrides] (Listing 3
line 6). This is where you specify which
built-in Wine libraries you will be using
and which you will be replacing with the
original Windows versions. These set-
tings can be prioritized; for example,
specifying "native, builtin" indicates that
Wine should search for a native library
first. If this library is not available, the
Wine copy is used. To use the original
Windows DLL, you need to store it in
the simulated Windows filesystem tree
below windows/system or in the direc-
tory that contains the application you
will be launching. However, not all DLLs
are really appropriate or useful. For
example, the Windows kernel, user sys-
tem, and graphical subsystem are
located in the DLLs kernel.dll, user.dll,
and gdi.dll, and can’t be used with
Wine. The same thing applies to the 32-
bit counterparts, kernel32.dll, user32.dll,
and gdi32.dll. Low level DLLs, most
drivers, and VXD files are similarly
useless.

DLLs
Windows 98 DLLs are your best bet;
some of them are available off the Inter-
net [4] or from Microsoft. Avoid Win-
dows XP libraries, as they more or less
never provide error-free service. Even
with Win98 DLLs, caution is recom-
mended. Some work fine with some
applications, but the built-in Wine ver-
sion performs better with others. In
many cases, Wine can leverage the so
called controls, that is, DLLs that provide

Figure 2: Wine is known to work with a vari-

ety of Windows applications.

01 [wine]

02 "GraphicsDriver" = "x11drv";
(x11drv, ttydrv)

03 "ShowDotFiles" = "1"

04 "ShowDirSymlinks" = "1"

05 "Path" = "c:\\windows;c:\\
windows\\system"

06 "Windows" = "c:\\windows"

07 "System" = "c:\\windows\\
system"

08 "Temp" = "t:\\"

09 "Profile" = "c:\\windows\\
Profiles\\Administrator"

Listing 1: config Part 1

WineCOVER STORY

32 ISSUE 57 AUGUST 2005 W W W. L I N U X- M A G A Z I N E . C O M

Advertisment

form elements such as input fields or
dialog boxes, commctrl.dll and commdlg.
dll and their 32-bit counterparts; the
same thing applies to the OLE DLLs that
provide COM port functionality without
the software installation crashing. As the
whole thing is so complicated, Wine
allows users to specify the DLL settings
on a program-by-program basis, but
more of that later. WineHQ has notes on
DLL issues and information on many
common Windows DLLs at [5]. And you
can easily check the status of the Wine
library implementation at [6].

DLL Overrides
Some components installed by Office or
other programs can be a real pain. These
debuggers, which pop up whenever an
application crashes, can make life a mis-
ery. mdm.exe in the windows/ system
directory is a typical example. Thank
goodness you can disable this kind of
application in the DLLOverrides section:
for example:

"*mdm.exe" = "builtin"

means search for this component in the
Wine library collection. And because
this program does not exist in the col-
lection, it can’t run.

Graphical Subsystem
The following group [x11drv] (Listing 4)
describes the properties of Wine’s graph-
ical subsystem, which converts Win-
dows API calls to X11 on the Unix oper-
ating system. The "Managed” and
"Desktop" settings are of interest. A
value of "Y" for the former tells the X11
window manager to handle Windows
program windows; a setting of "N"
means that Wine will handle this. The
advantage of allowing the window man-
ager to do this job is the improved inte-
gration with the desktop windowing sys-
tem. If you allow Wine to handle win-
dow dressing, you get the typical Win-
dows look & feel instead. In many cases,
programs will only run in this mode.
Setting “Y” as the default is a good idea
in most cases.

The "Desktop" parameter allows a pro-
gram to run in its own desktop window;
you can specify the size, such as
800x600. This makes sense if the pro-
gram breaks your desktop or insists on
running in the foreground. This is also

the recommended mode for games,
which tend to switch graphics modes
frequently. And if a game crashes, this
can leave the computer in the selected
graphics mode. The various members of
the Windows Install Shield family also
tend to grab the whole desktop and
interrupt anything else going on there.
Some sections allow individual configu-
rations for the X11 driver, but again, I
will be looking at the subject in more
depth later on.

The other settings in this section con-
trol accelerated graphics modes, so you
should be fine with the defaults; the
same thing goes for the font, I/ O port,
and other sections. The installation
packages take care of distribution spe-
cific settings.

Sound Settings
Things start to liven up again in the
"WinMM" section, which handles sound
output. You need to enable the right

driver for sound output. For KDE users,
the correect driver is "winearts.drv".
Not all of these drivers are well imple-
mented. And for sound output in partic-
ular, you may need to resort to "wineoss.
drv", assuming you disable sound out-
put for all your other programs prior to
making this selection to avoid conflicts.
This warning particularly applies to the
KDE and Gnome sound services artsd
and esd.

The subsequent sections handle appli-
cation defaults. [AppDefaults\\
<program>\\x11drv] defines the
graphic output settings for a specific
program. You can use an optional
[AppDefaults\\<program>\\DllOver-
rides] to set up DLL defaults that will
take priority over the settings in the
matching generic sections. This allows
you to demote Install Shield to a win-
dow, or prevent Quicktime Player 5 from
using DirectDraw.

The documentation at [7] gives you

01 [Version]

02 ; Windows version to imitate (
win95,win98,winme,nt351,nt40,w
in2k,winxp,win2k3,w

03 "Windows" = "win98"

04 ;"DOS" = "6.22"

05

06 [DllOverrides]

07 ; Some native dlls won't work,
so leave these builtin.

08 ; Do not modify these lines.

09 "advapi32" =
"builtin";Native version won't
work

10 "avicap32" =
"builtin";Hardware related

11 "capi2032" =
"builtin";Completely
implemented

12 "comctl32" =
"builtin";Native version cause
bugs.

13 "comdlg32" =
"builtin";thunk

14 "crtdll" =
"builtin";Completely
implemented

15 "ctl3d32" =
"builtin";thunk

16 "d3d8" =
"builtin";Hardware related

17 "d3d9" =
"builtin";Hardware related

18 [...]

19 "msi" = "native"

20 "ole32" = "native"

21 "odbc32" = "native,
builtin"

22

23 ; some spy or definitely not
working programs we don't like
to be started

24 "*autorun.exe" =
"native,builtin"

25 "*ctfmon.exe" = "builtin"

26 "*ddhelp.exe" = "builtin"

27 "eMusicClient.exe" = "builtin"

28 "*findfast.exe" = "builtin"

29 "icwconn1.exe" = "builtin"
;Prevent from loading ICW even
if registry key

30

31 ; default for all other dlls
and executables

32 "*" = "native, builtin"

33 ;"*" = "builtin, native"

Listing 3: config, Part 2

WineCOVER STORY

34 ISSUE 57 AUGUST 2005 W W W. L I N U X- M A G A Z I N E . C O M

many more useful guidelines on Wine
parameters, configuration, and fine tun-
ing.

Experts will prefer the manual
approach to Wine configuration; that is,
they will prefer editing the configuration
file. Newcomers may prefer a conve-
nient, GUI-based tool. winesetuptk sup-
ports simple editing, or generation of the
.wine/config files.

Unfortunately, the tool has not been
maintained and thus uses some obsolete
configuration options. A new tool titled
winecfg is under development but not
finished at this time of writing. And this
leaves you with the option of manual
configuration, one of the Wine-based
Winetools, or Crossover Office.

Ready, steady, go!
One of the most important commands
for daily use of Wine is the Windows
system reboot. Fortunately, Wine helps
you avoid a genuine reboot. Entering

wineboot
will initiate the boot process in Windows

fashion.
Many programs use Install Shield.

Unfortunately, Microsoft has not seen fit
to specify a clear cut installation scheme
thus far, in contrast to the schemes intro-
duced to Linux a while back such as
DPKG or RPM. This means that installers
are some of the biggest obstacles to
Wine, and they can cause issues with
more complex programs.

If you have a program that you can’t
install for love or money, you might like
to install the program under Windows
98 first. Make sure you back up, or bet-
ter still, export the Registry before you
attempt the installation. After installing
the required program, copy the program
directory to the appropriate directory
below ~/.wine, export the Windows
Registry again, and compare the results.
You will need to run the Wine regedit
tool to modify any keys that have
changed. In most cases, an installation
will introduce new DLLs, and again you
will need to copy these DLLs to your
Wine directory. With a bit of luck, the
program should run. Programs that do

not use Registry keys are even more use-
ful; Lotus Notes is an example. Although
the installer will not run in Wine, you
can install on Windows and then simply
copy version 6.51 of Notes to the right
place in your Wine filesystem tree.

Programs that prompt you for a CD, or
to insert the next floppy disk during the
installation or later, can prove difficult
for inexperienced users. Of course, you
need to mount the CD in Linux, how-
ever, you must prevent the installer from
accessing the CD in the mount directory,
as this attempt to access the CD will lock
the drive, preventing it from being
unmounted when you need to swap
disks. If you are aware of this problem,
you should have no difficulty responding
to a change disk prompt by unmounting
the CD at the console, changing the CD,
and mounting the next CD.

Daily use has shown that some pro-
grams need to be launched from within
their program directories to perform
well. Some programs do not take kindly
to users switching virtual desktops at
runtime; in fact, they may hang and take

Advertisment

COVER STORYWine

35ISSUE 57 AUGUST 2005W W W. L I N U X- M A G A Z I N E . C O M

a lot of reanimation. This often means
restarting the application. Programs that
do not exit gracefully can leave compo-
nents running in memory; typing ps
-ax|grep wine will give you more details.

wineserver -kill

kills any and all current instances of
Wine.

Programs that hog the whole screen
and mess it up are also a nuisance. The
best approach to handling these progra-
ms in Wine is to bundle them off into a
window when they are launched, as
described previously: simply remove the
comment tag from the Desktop" =
"1024x768 line to run all of your Win-
dows applications in windows. Or better
still, create an application-specific sec-
tion in the configuration to run just the
offending program in a window.

The Control Center helps handle pro-
grams that are configured via the Win-
dows System Settings. Typing the follow-

ing command:

wine control

launches the tool and gives you access
to the installed system configuration
components. You can also deinstall pro-
grams using the Control Center:

wine uninstaller

launches an applet that takes you to a
selection of registered deinstall pro-
grams. Wine has restricted support for

DOS programs.

 wine wcmd

launches the com-
mand interpreter,
where you can
run DOS pro-
grams, but don’t
set your sights too
high. If you want
to run a DOS pro-

gram, you might prefer to use dosemu or
dosbox [8]. This is particularly true of
DOS games.

Working with Hardware
Wine provides an emulation layer for
binary files belonging to another operat-
ing system. This involves a few restric-
tions that make some applications unus-
able, or virtually unusable. For example,
applications that need a specific hard-
ware driver will not run. In fact, merely
attempting to install a Windows hard-

01 [x11drv]

02 ; Number of colors to allocate
from the system palette

03 "AllocSystemColors" = "100"

04 ; Use a private color map

05 "PrivateColorMap" = "N"

06 ; Favor correctness over speed
in some graphics operations

07 "PerfectGraphics" = "N"

08 ; Color depth to use on
multi-depth screens

09 ;;"ScreenDepth" = "16"

10 ; Allow the window manager to
manage created windows

11 "Managed" = "Y"

12 ; Use a desktop window of
640x480 for Wine

13 ;"Desktop" = "1024x768"

14 ; Use XFree86 DGA extension if
present

15 ; (make sure /dev/mem is
accessible by you !)

16 "UseDGA" = "N"

17 ; Use XVidMode extension if
present

18 "UseXVidMode" = "Y"

19 ; Use XRandR extension if

present

20 "UseXRandR" = "N"

21 ...

22

23 [WinMM]

24 "Drivers" = "wineoss.drv"
; default for most common
configurations

25 ;"Drivers" = "winearts.drv"
; for KDE

26 ;"Drivers" = "winealsa.drv"
; for ALSA users

27 ;"Drivers" = "winejack.drv"
; for Jack sound server

28 ;"Drivers" = "winenas.drv"
; for NAS sound system

29 ;"Drivers" = "wineaudioio.drv"
; for Solaris machines

30 ;"Drivers" = "" ;

31

32 [AppDefaults_INS0432._MP\\
x11drv]

33 "Desktop" = "1024x768"

34

35 [AppDefaults\\QuickTimePlayer.
exe\\DLLOverrides]

36 "ddraw" = ""

Listing 4: config, Part 3

Figure 3: The Uninstaller takes you to a selection of deinstall tools.

[1] “Wine Headquarters”: http:// www.
winehq. org/ site/ download

[2] Wine download site: http://
prdownloads. sourceforge. net/ wine

[3] Debian package download: http://
www. winehq. org/ site/ download-deb

[4] Source for Windows DLLs:
http:// www. dll-files. com

[5] DLL topics: http:// www. winehq. com/
site/ docs/ wine-devel/ arch-dlls

[6] Library implementation status: http://
www. winehq. com/ site/ status_dlls

[7] Wine documentationhttp:// www.
winehq. org/ site/ documentation

[8] Dosbox:
http:// dosbox. sourceforge. net

[9] Applications that run on Wine:
http:// appdb. winehq. org

[10] Frank’s Corner, alternative Wine site:
http:// frankscorner. org

[11] Debug documentation:
http:// winehq. org/ site/ docs/
wine-user/ x1824#AEN1826

[12] Wine forums for your questions:
http:// www. winehq. org/ site/ forums

[13] Crossover Office:
http:// www. codeweavers. com

[14] Cedega by Transgaming:
http:// www. transgaming. com

[15] Transgaming installation packages:
http:// www003. portalis. it/ 115/

INFO

WineCOVER STORY

36 ISSUE 57 AUGUST 2005 W W W. L I N U X- M A G A Z I N E . C O M

ware driver is doomed to failure, as the
way the two operating systems handle
hardware is vastly different. Some pro-
grams that required direct hard disk or
CD ROM access will run despite this.
Wine gives you a direct access mode to
support this, allowing such unlikely can-
didates as the downloadable version of
Nero Burning Rom to run, whereas Clon-
eCD provides its own drivers for drive
access; drivers that, unfortunately, will
not talk to Wine. No matter what appli-
cation you are thinking of running, you
might like to check out the application
databases at [9] and [10] to find out if
someone has already done the hard
work or possibly created an installation
report or guide.

DirectX
Games that rely on DirectX may or may
not run well. Again, the Internet sources
will tell you more. Wine emulates the
behavior of DirectX 8, and that gives you
a genuine chance of running DirectX
compatible games. On the downside,
anything that uses copy protection will
not run on Wine. These mechanisms are
so low-level that they are doomed to fail.
Whatever you do, do not install the orig-
inal DirectX. It won’t work, but it might
completely destroy your current Wine
directory setup.

Debugging
Every Wine user will make the acquain-
tance of the winedbg debugger sooner or
later. The debugger appears whenever

an application running in Wine crashes.
If you are not interested in investigating
the whys and wherefores, you can sim-
ply quit. If you prefer to analyze the
problem, you can type bt to request a
backtrace.

The best approach with misbehaving
programs is to try out the various set-
tings for the Windows version first.
Some programs are very choosy about
the path from which you launch them.
Again, you might like to try launching
the program from its own directory,
providing a complete Windows path, or
trying the Linux path (Listing 5). Even
though the examples in these paths are
supposed to be equivalent, a Windows
program might not see things the way
you or I do.

Your choice of window manager might
also cause a few issues. Changing the
Managed and Desktop parameters can
work miracles in this case, especially if a
program runs but fails to draw the pro-
gram window correctly.

It can also make sense to specify
debugging parameters when launching a
program: WINEDEBUG="+loaddll"
wine program_path will launch a pro-
gram and tell you whether the DLLs the
program uses are native or built-in. This
information allows you to identify DLLs
with an inadequate implementation in
Wine and to replace these DLLs with the
native Windows equivalents, which in
turn, hopefully, will allow you to run the
desired program. The Wine Debug docu-
mentation at [11] quotes a number of

additional parameters that allow users to
output specific runtime environment
components.

If you're looking for help with Wine,
the Wine-Users mailing list archives at
[12] have a number of discussion
threads with questions and answers on
Wine issues. And, of course, new ques-
tions are welcome. ■

01 wine "c:\\program files\\
microsoft office\\office\\
winword.exe"

02

03 wine "~/.wine/c/Program Files/
Microsoft Office/Office/
WINWORD.EXE"

04

05 cd ~/.wine/c/Program Files/
Microsoft Office/Office; wine
WINWORD.EXE

06

07 cd ~/.wine/c/Program Files/
Microsoft Office/Office; wine
"c:\\program files\\microsoft
office\\office\\winword.exe"

Listing 5: Alternative
Program Launchers

There are a few things you need to take
care of before you can put Wine to pro-
ductive use. First of all, you should be
aware that only 30 percent of all Win-
dows applications will run successfully
under Wine. Don’t demand too much
from the system; it is not designed to be
a replacement for Windows; if you are
looking for one, the obvious answer is
Linux, with its amazing collection of use-
ful and free applications. What Wine
gives you is the chance to run important
Windows applications for which you do
not have a Linux replacement, thus
allowing a gradual migration. If you
make heavy use of Office products, you
will definitely appreciate the ability to
continue using these products and try-
ing out something new at the same
time. The commercial variants, Cedega
for games and CrossOver Office for
Office products, are definitely valuable
contributions, as they provide support
and help keep development work up to
speed. In a commercial environment,
you will find it difficult to replace them.

Future

Wine has given rise to a number of
major commercial products, all of which
have drawn on the Wine codebase
before specializing on specific features,
which they have then given back. Code-
Weavers’ CrossOver Office [13] special-
izes in supporting major Office applica-
tions, and it has to be said that Code-
Weavers have done a great job. The fact
that CodeWeavers give their patches
back to the Wine developers has allowed
Wine to really grow over the last 12
months. CrossOver Office gives you the
latest Wine libraries, a very convenient
installer for the applications it supports,
complete desktop integration, and sup-
port from CodeWeavers. The disadvan-
tages of having to test new Wine ver-
sions, time-consuming, marathon instal-

lation sessions, and hours spent brows-
ing documentation on the Web, can be a
thing of the past, for a low asking price
of just US$ 40 or EUR 40.
Transgaming's Cedega [14] specializes in
using Wine as a gaming platform and
has pushed development of the DirectX
emulation. Special copy protection code
allows users to run copy protected
games. The software is available as a
subscription version for US$ 5 or EUR 5
per month with a minimum subscription
of three months. With the exception of
the copy protection code, the source
code for Cedega is available, and this
means that users can build Cedega
themselves. Ready-made installation
packages for various distributions are
available from [15].

Alternatives: CrossOver Office and Cedega

COVER STORYWine

37ISSUE 57 AUGUST 2005W W W. L I N U X- M A G A Z I N E . C O M

