
66

With a modern Linux distribu-
tion, you just need a few
clicks to create a new user

account. Figure 1 shows you an example
from Suse. GUI-based front-ends of this
kind rely on command line programs
such as adduser or useradd to do the
heavy lifting.

It is extremely important for adminis-
trators to know exactly what goes on
when they create a user account. Auto-
mated features can be tailored to meet
the requirements in your environment.
When you create an account, a number
of databases need the new user’s details.
Users will typically need a home direc-
tory and write privileges to match.
Administrators don’t just throw their
users in at the deep end when it comes
to program settings; instead, many set-
tings are pre-configured. Of course, it is
impossible to take every setting into
account when creating new users, espe-

cially if the user will not be logging in
until some time in the distant future.

Creating a User Account
When creating a user account, the first
step is to store information for that user
in the central database. Assuming you
do not have a distributed system such as
NIS , NIS+, NetInfo or LDAP, but are
simply managing the users on a stand
alone computer, the file will be called
/etc/passwd. This is a text file with an
entry for each account, including the
login name and user ID, the group ID of
the primary group, the home directory,
and the preferred shell. You can also add
details such as the user’s first name,
family name, or telephone number.

Unix systems previously stored an
encrypted password that was used to
authenticate the user in /etc/passwd.
The problem with this approach was
that /etc/passwd needed to be globally

readable, that is, the permissions were
set to 0700. And that meant that anyone
could read the encrypted passwords.

Today’s processors do not take long to
brute force weak passwords [1], so any
user with access to the system has the
opportunity to escalate his or her privi-
leges.

To improve security, most of today’s
Unix derivatives store passwords in the
/etc/shadow file. The file is owned by the
root user and the shadow group and read
privileges are typically restricted to root
and possibly the members of the shadow
group. This prevents other users from
accessing the passwords. A typical entry
in /etc/passwd looks like this:

mas:x:1000:1000:Marc Andre U
Selig,,,:/home/mas:/bin/bash

Some Unix systems do not use the pass-
word file directly but generate a binary

The steps for setting up new accounts in Linux are automated

and often use GUI-based tools. Under the hood, a number of

mechanisms give the new user an environment to match his

or her needs. In this month’s Admin Workshop we discuss

techniques for setting up accounts.

 BY MARC ANDRÉ SELIG

HERDING ACCOUNTS
 Managing Linux User Accounts

HERDING ACCOUNTS

Admin Workshop: User ManagementSYSADMIN

66 ISSUE 56 JULY 2005 W W W. L I N U X- M A G A Z I N E . C O M

67

database from that file. BSD derivatives
are notorious in this respect. To avoid
conflicts and race conditions, there is
vipw, which allows the root user to edit
the password file. The tool runs the vi
editor against /etc/passwd, locking the
file at the same time to prevent access by
any other administrative users, and
cleans up the binary user databases after
the modifications have been completed.

Groups
User groups are a central feature of privi-
lege management on any Unix system.
Admins can create groups in a similar
way to creating user accounts by run-
ning the addgroup or groupadd tools, for
example. Groups are stored in a file
called /etc/group.

Each file created on a Unix machine is
automatically assigned a user and a
group. Admins can assign permissions
separately for the user of the file and the

group. The ability to assign multiple
users to a group makes it easy to grant
these users access to specific files or
directories.

Some typical examples of groups are
modem or dialout for access to a modem
port, audio for the sound card, and
cdrom for assigning permissions for the
CD-ROM drive. A database system could
assign users permitted to access the
database to a group called db, for exam-
ple.

Users can belong to any number of
groups, but each user has a primary
group which specifies the group owner-
ship for any files that user creates. The
primary group is listed in /etc/passwd,
and any other memberships are listed
in /etc/group. The id command displays
the group memberships for a user:

mas@ishi:~$ id
uid=500(mas) gid=100(users) U
groups=100(users),14(uucp),
16(dialout),U
17(audio),33(video)
mas@ishi:~$

Modern Linux distributions have two
different approaches to primary group
assignments. Some set up a global users
group for all human users of the system.
Users can run the chmod command to

specify whether any files they create will
be readable for the other group members
(by setting the permissions to 0640: read
and write permissions for the owner,
read permissions for the group, deny
permissions to all others), or not (0600:
no permissions for the group or any
other users).

Other distributions assign each user to
a group of his or her own. This improves
data protection slightly and allows users
to set up granular teams by adding each
other to their individual groups. This
said, it makes more sense to set up spe-
cific task-related groups rather than just
allowing things to develop.

There are a number of administrative
groups for access control to programs or
specific files. For example, the wheel
group traditionally holds users who are
allowed to run the su tool or equivalents.
Today's distributions tend not to have a
wheel group — just to keep things sim-
ple — and instead allow any user to run
su. Groups such as tty, disk, and lp refer
to system components (access to termi-
nals, hard disks and printers); and the
bin or sys groups allow administrators to
specify which accounts can launch
which programs. These groups are never
assigned to human users.

The special nobody (or nogroup)
groups are assigned to users without any

Figure 1: Creating user accounts on Suse is child’s play. Scripts working in the background

handle the details.

SYSADMINAdmin Workshop: User Management

67ISSUE 56 JULY 2005W W W. L I N U X- M A G A Z I N E . C O M

privileges, however, there is a danger of
these groups mutating to “everybody” as
software packages tend to create files
with this group ownership. It makes
more sense to set up a special nobody
group for each software package.

Home Directories
When an administrator creates a new
user, simply adding the home directory
/home/user to /etc/passwd will not be a
big help. Of course, the directory needs
to be created. Besides the obvious mkdir
step, the administrator has to remember
to set appropriate user and group per-
missions by running chown (and possi-
bly chgrp).

Depending on your distribution and
preferences, you can set the permissions
for home directories to 0755, 0711, or
0700. The first variant allows anyone
read access to the directory. The second
variant allows access to the files and
directories below the directory, assum-
ing that their permissions are set and
their names are known, but preventing
directory listings. The third variant pre-
vents access by other users. As the home
directory belongs to the new user, he or
she can modify these defaults any time
later.

But admins can’t just sit back and
relax after creating the home directory.
Defaults are needed for common pro-
grams and environmental variables need
to be set up for the user. Most Unix pro-
grams use so-called dotfiles for configu-
ration; dotfiles are hidden configuration

files (or directo-
ries) in the home
directory belong-
ing to the user
running the pro-
gram. It is easy to
see where the
name comes from,
as the names of
these files or
directories always
start with a dot.

The
Skeleton
A window man-
ager needs to
know what soft-
ware is installed
to be able to pro-
vide appropriate

menus. Word processors and image
manipulation programs need to support
the local measurements and printer
parameters. Browsers need to know
where proxies are located, and so on.

The /etc/skel/ (for skeleton) directory
has a basic template for new home direc-
tories. Admins can store the dotfiles to
be assigned to new user accounts in the
skeleton directory. When a new home
directory is created, the skeleton is sim-
ply copied to that directory.

This finally completes the user
account and environment. Listing 1
shows you the commands needed to cre-
ate a user account. Running this list of
commands each time you need to create
a new user is extremely time-consuming,
so tools such as adduser and useradd

help automate these steps. Figure 2 gives
an overview of the steps involved.

Advanced Settings
One big problem with pre-configuring
new accounts is that many settings are
unknown in advance. Although the local
language and time zone are fairly easy to
get right, and will tend not to vary, pro-
gram specific settings are a completely
different thing and can even change in
the case of updates. To make things
worse, administrators can’t assume that
a user will immediately start to use the
account and then take over managing
the configuration options from that point
onward.

In many cases it makes sense to set
up permanent configuration files at a
central location, assuming that the
application in question supports this
approach. Typical X11 window manag-
ers, or the xinit configuration are good
examples of this. Administrators can
simply maintain the central configura-
tion structures in /etc/X11/. In case of an
update, the administrator (or the pack-
age manager) simply modifies these
directories to automatically propagate
the new settings to users. If advanced
users are unhappy with the defaults,
administrators can assume that they will
change the settings in their home direc-
tories.

Listing 2 shows an example of an /etc/
X11/xinit/xinitrc file, which initializes
the keyboard and profiles centrally (lines
11 through 17). Wherever users have
made individual changes, the script
automatically applies these changes
(lines 19 through 25).

Admins can use a similar approach
to set environmental variables in the
central shell profiles /etc/profile (for
Sh and Bash) or /etc/csh.cshrc and /etc/
csh.login (for Csh and Tcsh). Wherever
users have defined their own versions
of these files in their home directories
(again, these are dotfiles), the shell
will run these files, assigning higher
priority to the settings in these files, at
least for variables. Central settings such
as ulimits can be assigned to have prior-
ity over local variants. Bash allows

Figure 2: Creating a new user account involves a series of chores.

Tools such as useradd offload most of the work off the administrator.

add user mas

copy all files from /etc/skel/
to /home/mas/

modify /etc/group :
add users to all required groups

create /home/mas/
and set permissions

modify /etc/passwd :
login name
user ID
group ID
username
home directory
shell

modify /etc/shadow :
login name
encrypted password
expiry date
additional parameters

01 $ su

02 Password:

03 # vipw

04 [...]

05 # passwd mas

06 # mkdir /home/mas

07 # cd /etc/skel && tar cf - . |
(cd /home/mas && tar xpf -)

08 # chown -R mas:users /home/mas

09 # chmod -R u+rwX,go-rwx /home/
mas

10 # exit

11 $

Listing 1: User Account
for mas

[1] John the Ripper, a password cracking
tool: http:// www. openwall. com/ john/

INFO

Admin Workshop: User ManagementSYSADMIN

68 ISSUE 56 JULY 2005 W W W. L I N U X- M A G A Z I N E . C O M

administrators to define some
variables as readonly. This
gives administrators granular
control over the settings.

If a centralized approach to
configuring and managing
accounts turns out to be
impossible, because some
applications do not support it
and a workaround is not
available, you can always
resort to an old trick: replace
the program file with a
startup script.

The script will need to
check the home directory for
a version of the configuration
file and, if this does not exist,
copy the file with the default
settings from a centralized
location before launching the
application itself. Depending
on the amount of effort you
are prepared to put into this,
you could even tell the
startup script to change the
configuration files automati-
cally in case of an update. ■

01 #!/bin/sh

02 # $Id: xinitrc,v 1.2 2003/02/27 19:03:30 jharper
Exp $

03

04 userresources=$HOME/.Xresources

05 usermodmap=$HOME/.Xmodmap

06 sysresources=/etc/X11/xinit/.Xresources

07 sysmodmap=/etc/X11/xinit/.Xmodmap

08

09 # merge in defaults and keymaps

10

11 if [-f $sysresources]; then

12 xrdb -merge $sysresources

13 fi

14

15 if [-f $sysmodmap]; then

16 xmodmap $sysmodmap

17 fi

18

19 if [-f $userresources]; then

20 xrdb -merge $userresources

21 fi

22

23 if [-f $usermodmap]; then

24 xmodmap $usermodmap

25 fi

26

27 # start some nice programs

28

29 xterm &

30

31 # start the window manager

32

33 exec fvwm2

Listing 2: /etc/ X11/ xinit/ xinitrc

