
Schlagwort sollte hier stehenLINUX USER Schlagwort sollte hier stehenCOVER STORY COVER STORYSchlagwort sollte hier stehen

Many firewall admins allow
direct access to the Web from
the internal network but are

more restrictive with other services such
as FTP or SMTP. They rightfully argue
that filter rules that allow a minimum of
services and ports are easier to track and
manage. Application Level Gateways
(ALGs) provide even more granular con-
trol and are typically implemented as
proxies (Figure 1a). However, the appli-
cation firewall needs a proxy for each
service.

The Socks protocol [2] (RFC 1928, Fig-
ure 1b) treads a path between the state-
ful packet filter and the ALG. Socks is
implemented in the Dante package [1],
for example. The generic Socks proxy
technology leaves the firewall in control
of applications, separating networks in
the Transport Layer and giving clients a
fixed request port (typically 1080).

Clients formulate Socks
requests, specifying target

servers and services
(such as HTTP,

SMTP, or FTP).
The Socks

proxy (also

nection uses port 1080 by default. The
client sends a Negotiation packet sug-
gesting a few authentication methods
(number in NMETHODS and methods in
METHODS).

If the proxy accepts the request (step 2
in Figure 2), it uses a Server Negotiation
packet to tell the client its preferred
authentication method (METHODS with
exactly one entry). The proxy then pro-
ceeds to authenticate the client (step 3).
The exact procedure at this step depends
on the selected method.

The client then sends a request to the
proxy stating which service it requires
(target address DST.ADDR and target
port DST.PORT). The Socks proxy evalu-
ates the request, based on the client ID
and the target address, taking an access
control list into consideration in a style
typical of firewalls. If the client is
not allowed the type of
access it has requested,
the Socks proxy
drops the con-
nection to
the client.

Socks is a universal proxy protocol for TCP and UDP that allows internal hosts to securely pass the firewall

and authenticates users. This article describes the latest version of the Socks proxy protocol and shows how

to implement it. BY THOMAS KUHN AND ACHIM LEITNER

Examining the generic Socks version 5 proxy protocol

SOCKS FOR PROXY

known as a Socks server) authenticates
the client and authorizes the client for
access, sets up the connection to the tar-
get server, and transparently forwards
any data sent or received.

Intermediate
Normally, client applications need to
have integrated Socks support to be able
to use the proxy, as Socks does affect the
way protocols interact. However, a wrap-
per can add Socks support to binaries
using LD_PRELOAD technology. To do
this, the wrapper implements a custom-
ized socket library.

The name Socks is derived from
Socket, the original working title was
SOCK-et-S. There are two main versions:
Socks v4 and v5. Both protocols insert
themselves into the OSI model between
the Transport and Application layers.
Version 4 is restricted to handling con-
nection requests, honoring Proxy rules,
and forwarding application data. It does
not provide any kind of authentication
and is restricted to TCP. Socks v5 adds
robust authentication mechanisms and
extends support to UDP.

Roundabout Route
In a typical Socks scenario, the client
might want to access the HTTP service
provided by a server on an external net-
work. The procedure is shown in Figure
2, the data format in Figure 3, and the
field contents are shown in Table 1. The
client starts by opening a TCP

connection to the Socks
proxy (1); the con-

w
w

w
.sxc.h

u

Socks v5SYSADMIN

62 ISSUE 56 JULY 2005 W W W. L I N U X- M A G A Z I N E . C O M

63

COVER STORYSchlagwort sollte hier stehen

In any other case, it replies with one or
multiple server reply packets.

Addressed
Socks requests and replies can contain
different types of addresses. The proto-
col supports IPv4 and IPv6 addresses,
along with domain names. The latter
removes the need for the client to per-
form a DNS lookup, and the internal net-
work does not need to resolve external
DNS names.

Depending on the client request type,
that is, depending on the value of CMD
(Figure 2 and Table 1), the address
details in the Socks server reply have a
different significance. A reply to a CON-
NECT request contains the BND.PORT
and BND.ADDR, that is the address at
which the proxy has connected the tar-
get server.

The BND.ADDR address is typically
not identical to the Socks server address,
to which the client sent the original
request. This constellation, which is
referred to as a multi-homed Socks
server, is typical of a Socks firewall that
connects two networks. After a success-
ful Connect command, the client and
target server can communicate transpar-
ently through the proxy; Socks simply
forwards any data.

The client sends a BIND request to
indicate that it expects an incoming con-

nection from a target server. This sce-
nario might seem back-to-front, but it is
quite normal in the case of the FTP pro-
tocol in active mode. With FTP, and fol-
lowing best client-server traditions, the
client first establishes a connection to
the FTP server; this is known as the con-
trol connection. Whenever a file needs
to be transferred, the server establishes a
data connection back to the client. Prior
to this, the client needs to tell the server
which address and port the server
should use. Again, this information is
sent across the control channel.

Upside-Down World
Socks can selectively allow this type of
connection into the internal network.
The client opens the control channel to
the server by sending a normal Connect

request. The client then uses a Bind
request within a second connection to
ask the Socks proxy to open a port for
the incoming data connection.

The proxy sends two replies in
response. The first contains the port and
address at which the Socks server will
listen for the incoming connection. The
proxy does not send the second reply
until the target server opens a connec-
tion. When this happens, the proxy’s
reply contains the source address and
source port the target machine used to
open a connection to it. Finally, the
proxy forwards the data from the exter-
nal server to the internal client.

If you want Socks to act as a UDP
proxy, the client first needs to use TCP to
contact the proxy and authenticate (Fig-
ure 4). The CMD it stipulates in this case
is the third value in Table 1: UDP Associ-
ate. As the client will actually be using
UDP to transmit data later on, it needs to
tell the proxy where these packets will
be coming from. To do so, the client
adds its own address and port to the
DST.ADDR and DST.PORT fields.

The proxy then opens an internal UDP
relay port, allowing the client to send
packets to the outside world. The client
reads the address and port for the relay
from the server’s reply to the UDP Asso-
ciate request: BND.PORT and BND.
ADDR. And this is where the client has
to send any UDP packets destined for the
external network. The client wraps its
own UDP packets in a UDP Request
(Figure 3 bottom). The UDP Relay stays
open for as long as the client keeps the
authenticated TCP connection up.

Authentic
The authentication method can also pro-
vide trust and integrity between the cli-
ent and the proxy. The authentication

Figure 1a: If the firewall is implemented as an application level gateway, it separates the inter-

nal and external networks at application level. However, it then needs a proxy for each proto-

col.

SMTP

FTP

IRQ

DNS

Configuration

Configuration

Configuration

Configuration

C1

C2
S4

S3

S2

S1

Intranet
Application Level Gateway

Internet

Figure 1b: In contrast to an ALG, Socks assumes the role of a generic proxy, accepting s con-

nections for any application protocols on port 1080, authenticating clients, and authorizing

transfers.

C1

C2

S1

S2

S3

S4

Intranet Internet
Configuration

Socks Proxy

Port 1080

Figure 2: When establishing a Socks v5 connection, the client starts by sending a negotiation

packet to the Socks proxy (1). The client authenticates (3); the proxy then establishes the

connection to the target server (6) and forwards data (8).

3. Authentication Protocol

4. Client Request

5. Server Reply

Internet

7. Server Response

6. Server Request

Intranet

Socks Port
1080

8. Data

2. Server Negotiation

1. Client Negotiation

Configuration

Bind Port

Socks Proxy

Client Server

8. Data

SYSADMINSocks v5

63ISSUE 56 JULY 2005W W W. L I N U X- M A G A Z I N E . C O M

COVER STORYSchlagwort sollte hier stehenSchlagwort sollte hier stehenCOVER STORY

might involve encapsulating the data, for
example, using a secure protocol such as
SSL or TLS. After completing the client/
server negotiation process, the client
then authenticates using SSL/ TLS. Any
other data sent during the connection
can also be protected by SSL/ TLS, and
this form of secure communication
ensures trust and integrity. Users can run

mobile, wireless devices securely via the
Socks proxy.

Dante
The BSD-licensed Socks client and server
implementation Dante for Unix [1] sup-
ports Socks v4 and v5 and the less com-
mon MSproxy. Version 1.1.15 was
released at the end of January 2005.

Dante is developed by a Norwegian con-
sultancy called Inferno Nettverk A/ S,
who also have commercial modules for
bandwidth control and port/ forwarding
monitoring.

This said, the free version is typically
fine for most tasks. Besides providing
Socks and MSproxy services, it can also
act as a HTTP proxy, authenticate users
based on usernames and passwords, or
via Pluggable Authentication Module.
Support for interface names in the con-
figuration file allows it to support DHCP.

Configuring the Proxy
The normal install, using configure &&
make && make install, drops the Socks
server configuration file into /etc/sockd.
conf (Listing 1). In line 1, a logoutput
instruction tells Dante where to send the
logfiles (Syslog or Stdout). The internal
and external network interfaces are
specified by interface names in lines 4
and 5. This is useful for computers with
a DHCP-based configuration. Lines 6
and 7 show that IP addresses are just as
acceptable. Note that the internal inter-
face needs a port number.

The authentication methods supported
by Dante include username / password
(line 9), the Ident method as specified in
RFC 931 (line 11) and PAM. The Socks
server needs different user privileges to
reflect the authentication method. If it
needs access to the password file, it will
opt for a privileged user account
(defined as proxy in line 14), although it
is quite happy to be a nobody (line 15)
under other circumstances. Best practice
would suggest using a dedicated user
account for the Socks v5 server. Admins

01 logoutput: syslog
02 #logoutput: stdout
03
04 internal: eth0 port = 1080
05 external: eth1
06 #internal: 10.0.0.11 port = 1080
07 #external: 192.168.23.1
08
09 method: username
10 #method: none
11 #method: rfc931
12 #method: pam
13
14 user.privileged: proxy

15 user.notprivileged: nobody

16

17 client pass {

18 from: 10.0.0.3/
0 port 1-65535 to: 0.0.0.0/0

19 }

20

21 client block {

22 from: 0.0.0.0/0 to: 0.0.0.0/0

23 log: connect error

24 }

25

26 block {

27 from: 0.0.0.0/0 to: 10.0.0.11/0

28 log: connect error

29 }

30

31 pass {

32 from: 10.0.0.3/
0 to: 10.0.0.10/0

33 protocol: tcp udp

34 }

35

36 block {

37 from: 0.0.0.0/0 to: 0.0.0.0/0

38 log: connect error

39 }

Listing 1: Socks Server

Figure 3: Socks version 5 uses five packet types: Client Negotiation, Server Negotiation,

Client Request, Server Reply, and UDP Request. The fields specify the name and size. Table 1

describes the contents.

Client Socks-
Server

2variable1111

1111

BND.PORTBND.ADDRATYPRSVREPVER
Server Reply

Client Socks-
Server

variable 2
VER CMD RSV ATYP DST.ADDR DST.PORT

Client Request

Client Socks-
Server 11

VER METHODS
Server Negotiation

Client Socks-
Server

1-255
VER NMETHOD METHODS

Client Negotiation

Client Socks-
Server

112 variable 2 variable
RSV FRAG ATYP DST.ADDR DST.PORT DATA

UDP-Request

11

Figure 4: In a UDP scenario, the client first uses TCP to connect to the Socks proxy. The

Client Request (4) contains a UDP Associate command, in which the client tells the proxy

from where it will be sending UDP packets.

3. Authentication Protocol
Socks Port
1080

2. Server Negotiation

1. Client Negotiation

Socks ProxyClient Server

5. Server Reply (BND.PORT = Y)

4. Client Request (DST.PORT = X)

6. UDP-Request (DST.PORT = Z) 7. Data
Port X
UDP

Port Y
UDP

Port Z
UDP

(TCP)

Configuration

Socks v5SYSADMIN

64 ISSUE 56 JULY 2005 W W W. L I N U X- M A G A Z I N E . C O M

COVER STORYSchlagwort sollte hier stehen

can run the server in a chroot jail to keep
it well away from system files and also
give the server its own password file.

Well Filtered
Filter rules in the configuration files
allow you to specify which clients can
access the Socks proxy and to which
addresses the proxy is allowed to con-
nect. Dante parses the filter rules
sequentially. It first evaluates any rules
with the client prefix to establish which
computers are allowed to access the
Socks server (Lines 17 through 24). The
pass rules allow access, whereas block
rules disallow access. Lines 17 through

19 allow the computer with the IP
address of 10.0.0.3 unrestricted access,
whereas lines 21 through 24 deny any
other access. These rules are applied at
TCP/ IP level and have nothing to do
with the Socks protocol.

The second class of filter rules checks
the content of the client requests. These
rules specify the kinds of requests the
proxy will honor. The block rule in lines
26 through 29 of Listing 1 rejects any
requests from computers wanting to con-
nect to 10.0.0.11. The TCP and UDP traf-
fic from the host 10.0.0.3 with requests
for 10.0.0.10 is permitted (lines 1
through 34). The proxy will ignore any

other requests.

First Tests
Calling /sbin/sockd -d
launches the proxy in
debug mode. Launching
in debug mode tells the
proxy to log anything
important in logoutput.
Ethereal is perfect for
checking the details of
the communication. We
used the Mozilla
browser as our test cli-
ent. We set the Socks
server to 10.0.0.11 and
port 1080 in Manual
proxy configuration in
our case.

If the Socks proxy
refuses a connection on
account of missing or
inappropriate access
privileges, the user
might become aware of
the symptoms without
ever learning the reason
for the connection fail-
ure. For example, if the
Mozilla browser is faced
with a connection fail-
ure, it might simply
state that The document
contains no data in case
of an error in part 2 of
the filter rules, but there
is no mention of the
proxy being the cause.
To investigate the possi-
ble causes for a connec-
tion problem of this
kind, check out the
proxy logfiles, which

will be in/var/log/messages if you use
Syslog.

Socks All Round
Besides the Socks server, the Dante
package has a simple wrapper script
called socksify. The socksify script pro-
vides the user with the option of adding
Socks capabilities to most network client
programs. With socksify, you can add
Socks capability to protocols such as
SMTP, FTP, NTP, DNS, or IRQ. For exam-
ple:

./socksify -c ftp 10.0.0.10

In cooperation with a suitable /etc/socks.
conf configuration file, the preceding
command tells socksify to talk the ftp cli-
ent program into using the Socks proxy
without needing to rebuild the client.

route {
 from: 0.0.0.0/0 to: U
 0.0.0.0/0 U
 via: 10.0.0.11 port = 1080
 proxyprotocol: socks_v5
}

The preceding settings tell socksify to
use Socks v5 as its proxy protocol, and
to establish a secure network connection
via port 1080 on the computer at
10.0.0.11.

One for All
The Socks technology gives network
admins the ability to deploy a simple
and transparent method for security
management. Socks also adds authenti-
cation and encryption to networked
applications. In contrast to many other
protocols, the Socks proxy protocol does
not separate connection and user
authentication, and thus, Socks gives the
firewall complete control over all data
traffic. ■

Tag Content/ Description
ATYP Address Type:
 0x01: IPv4 address
 0x02: Domain name
 0x03: IPv6 address
BND.ADDR Socks Proxy source address for data transfer

to server
BND.PORT Socks Proxy source port for data transfer to

server
CMD Transmission types:
 0x01 CONNECT
 0x02 BIND
 0x03 UDP Associate
DST.ADDR Target address requested (on server)
DST.PORT Target port requested (on server)
FRAG Current fragment number (for UDP packets)
METHODS Selection field for authentication method:
 0x00: No authentication
 0x01: GSSAPI
 0x02: User name and password
 0x03 through 0x7E: Defined by IANA
 0x80 through 0xFE: Reserved for private

methods (only used locally)
 0xFF: The proxy has refused the methods

offered by the client
NMETHODS Number of entries in METHODS field

REP Reply field:

 0x00: Successful

 0x01: Generic Socks proxy error

 0x02: Connection disallowed by ruleset

 0x03: Network not accessible

 0x04: Host not accessible

 0x05: Connection request refused

 0x06: Timeout (TTL expired)

 0x07: Socks command not supported

 0x08: Address type not supported

 0x09 through 0xFF: Not defined

RSV Reserved

VER Protocol version (0x05)

Table 1: Packet Tags

[1] Dante: http:// www. inet. no/ dante/

[2] RFC 1928, “SOCKS Protocol Version
5”: http:// www. ietf. org/ rfc/ rfc1928. txt

[3] RFC 1929, “Username/ Password
Authentication for SOCKS V5”:
http:// www. ietf. org/ rfc/ rfc1929. txt

[4] RFC 1961, “GSS-API Authentication
Method for SOCKS Version 5”:
http:// www. ietf. org/ rfc/ rfc1961. txt

INFO

SYSADMINSocks v5

65ISSUE 56 JULY 2005W W W. L I N U X- M A G A Z I N E . C O M

