
32

wants to com-
municate with a

device (for instance, to
display something on a monitor,

print a document, or copy a file to a
floppy), the process asks the Linux
kernel to manage the communication
with the hardware (Figure 1).

User-Mode Linux is a Linux kernel
that runs in Linux as a process. The dif-
ference between a UML kernel and an
ordinary kernel is that the UML kernel
does not communicate directly with the
hardware. Commands pass instead to
the “real” Linux host kernel, which
manages the hardware communication.

about a
new or
untested patch.
System administrators
use UML to test system con-
figurations. You can even run multiple
versions of UML on the same host to
simulate a network.

What is User-Mode Linux?
User-Mode Linux is not really an emula-
tor, nor is it an API. The best way to
explain User-Mode Linux is to start with
a look at the role of the Linux kernel.

The kernel runs processes and talks
with the hardware. When a process

T
he
popular
and versatile

User-Mode Linux (UML) [1] creates a
fully operatational virtual Linux system
on a Linux host. UML has many uses in
the Linux world. Developers rely on
UML to test their applications without
putting the host system at risk. Linux
users run UML to experiment with ker-
nel versions without having to worry

Getting started with User-Mode Linux

LINUX IN LINUX

Schlagwort sollte hier stehenLINUX USER User-Mode LinuxCOVER STORY

32 ISSUE 54 MAY 2005 W W W . L I N U X - M A G A Z I N E . C O M

There is a very interesting document
that explain how to set up an SELinux-
enabled UML system at [15]. An
SELinux-enabled UML can be very use-
ful for creating more secure servers and
testing SELinux policy without putting
the system at risk.

SELinux into UML

User-Mode Linux feels like Linux because it is Linux. You’ll find a hundred uses for this fast and sensible

virtual Linux system. BY FABRIZIO CIACCHI

w
w

w.sxc.hu

Because the virtual system and the
host system are both Linux systems with
nearly identical structures, the commu-
nication passes very efficiently from the
virtual system to the host, requiring min-
imal overhead for abstraction or transla-
tion.

Setting Up UML
You can install User-Mode Linux with
your package manager. For example,
with Debian, you need to give this com-
mand as root:

apt-get install U

user-mode-linux U

uml-utilities U

kernel-patch-uml

This command installs the UML kernel
and also other utilities. Other package
managers are equally simple, but if you
have a problem installing from a pack-
age system, or if you have memory prob-
lems during boot [2], you may wish to
download a normal linux kernel (we rec-
ommend the 2.4.27 version [3]) and the
UML kernel patch [4]. You can find other
UML patches at [5]. When you have
downloaded the patch and kernel files
(in the same directory, of course), open
a terminal window and execute the fol-
lowing commands:

$ bunzip2 linux-2.4.27.tar.bz2
$ tar -xvf linux-2.4.27.tar
$ bunzip2 uml-patch-2.4.27-1.bz2
$ patch -p1 -d linux-2.4.27 U

< uml-patch-2.4.27-1
$ cd linux-2.4.27
$ make menuconfig ARCH=um
$ make linux ARCH=um
$ strip linux

After you sucessfully complete these
commands, you will have a file called
“linux” in your original directory. This
file is the User-Mode Linux kernel that
will be used to boot the virtual linux
system.

To make UML work properly, you
need to include two other pieces of the
puzzle: a root filesystem (a compressed
image of a linux partition that contains

33

COVER STORYUser-Mode Linux

33ISSUE 54 MAY 2005W W W . L I N U X - M A G A Z I N E . C O M

Figure 1: Normal Linux process structure.

Figure 2: UML runs as a process. In this fig-

ure, Proc1 is running on the host Linux sys-

tem. Proc2 is running on the User-Mode

Linux virtual system.

Perhaps the best way of understanding
the advantages of UML is to consider
that software of this type comes in three
forms:

• Software emulation

• Hardware emulation

• No emulation

Bochs [4] is one of the most famous soft-
ware system emulators. The principal
activity of Bochs is to supply an emula-
tion of a particular hardware architecture
(IA-32, called also x86) on top of a partic-
ular operating systems, like Windows,
MacOS and, obviously, Linux. Once the
hardware is emulated, it is possible to
install any x86 operating system on it
(Linux, Windows, Dos and so on), but
the execution is very slow, because
every computer instruction needs to be
translated from the guest operating sys-
tem to the host operating system.

Hardware emulation consists of the
code built on the native hardware archi-
tecture. A hardware emulator is more
efficient than the software emulator but
it needs to intercept all the calls to the
hardware. This solution has the big dis-
advantage that the code must be spe-
cialized for a particular hardware archi-
tecture that is the same for host and
guest environment. An example of this
type of emulator is VMware [5], a com-
mercial system emulator.

User-Mode Linux fits in the last cate-
gory; it doesn’t need to emulate any spe-
cific hardware, but it instead talks nearly
directly with the real hardware. Instruc-
tions pass efficiently from the UML ker-
nel through the host kernel. UML can
execute native code and can run with, at
worst, a 20% slowdown compared to
running the same code on the host.

Emulation Choice

Figure 3: Booting the UML virtual system.

$ bunzip2 U

root_fs_toms1.7.205.bz2
$ linux U

ubd0=root_fs_toms1.7.205

The ubd0= parameter tells the virtual
system to use the file specified as the
root filesystem.

If all goes well, you’ll see the virtual
system booting (Figure 3), and you can
log in to the virtual system with the
username root and the password root.

Sharing the Root File
System
It is possible to launch two or more vir-
tual machines using the same root
filesystem. The udb0 driver uses a mech-
anism called Copy-On-Write (COW),
which reads the root filesystem as a
read-only shared device and stores the
changes in a read/write private file (the
COW file). For example, if you want to

start two virtual machines (VM1 and
VM2) with the same filesystem, you
need to open two terminal sessions and
write the following commands:

[xterm 1]$ linux U

ubd0=uml_vm1.cow, U

root_fs_toms1.7.205
[xterm 2]$ linux U

ubd0=uml_vm2.cow, U

root_fs_toms1.7.205

All the modifications to the two virtual
hosts will be written on the respective
COW files. In truth, the filesystem is not
shared, but the two executions are inde-
pendent of each other. The most impor-
tant thing to avoid when the two COW
files are created is booting the filesystem
directly (with ubd0=root_fs_XXX),
because every cow file has registered the
size and the timestamp of the root
filesystem, and every modification will
make the COW files unusable. The cor-
rect syntax to use for the next reboot,
when we have a COW file, is as follows:

[xterm 1]$ linux U

ubd0=uml_vm1.cow
[xterm 2]$ linux U

ubd0=uml_vm2.cow

Virtual and Real
Networking
UML provides several interesting options
for networking virtual Linux systems.
Once you get your UML virtual system
up and running, you may wish to experi-
ment with networking the virtual system
with its host or networking it with other
virtual systems. You’ll find a thorough
description of UML networking at [8].

The basic idea behind UML network-
ing is that several optional transports are
provided for managing the exchange of
packets between the virtual system and
the host. Table 1 shows some of the
transport types available for UML.

all the programs) and the UML utilities.
For the root filesystem, you can find all
the available images at [6]. You’ll need
to download the UML utilities from [7]
and type the following commands:

$ bunzip2 uml_utilitiesU
_XXXXXXXX.tar.gz
$ tar -xvf uml_utilitiesU
_XXXXXXXX.tar
$ cd tools
$ make all
$ make install DESTDIR=/

You now have a directory that contains
the root filesystem. Remember to put
the linux program in a location that
permits you to use it. (If you haven’t
moved the linux program, it is still in the
linux-2.4.27 directory.) Then enter the
following commands to read the root
filesystem:

User-Mode LinuxCOVER STORY

34 ISSUE 54 MAY 2005 W W W . L I N U X - M A G A Z I N E . C O M

Figure 4: Booting process of the second UML virtual system.

Etherap, TUN/TAP Transports used for exchanging packets between the virtual system and
the real host.

Switch daemon A transport designed for purely virtual networking with other UML sys-
tems.

Multicast Another transport designed for virtual networking.
Slip, slirp Transports used primarily when Ethertap and TUN/TAP are not available or

if you don’t have root access to the networking configuration on the host.
Pcap A transport that provides a read-only network interface and is, therefore, a

good option for network monitoring.

Table 1: UML Transport TypesIf your goal is to use UML for testing
new Linux distributions, you can opt for
QEMU [12] system emulator application.
QEMU (based on Bochs [13]) is very
simple to install, set up, and use. For
more on QEMU, see “Virtual Benefits:
System Emulation with QEMU” in Linux
Magazine Issue #52, March 2005; you
can download the article in Pdf format
from our archive [14].

QEMU: A Good Alternative

User-Mode LinuxCOVER STORY

36 ISSUE 54 MAY 2005 W W W . L I N U X - M A G A Z I N E . C O M

To enable a network device in the
virtual machine, pass a string like the
following to the kernel command line:

eth<n>=U
<transport>,<transport args>

where <n> represent the real host
interface (i.e., eth0) to which the virtual
machine will attach. The theoretical
explanation is that, in the UML virtual
machine, there is an eth0 device that
corresponds to a tap0 device on the real
host; this tap0 interface is directly con-
nected to the eth0 interface of the real
host.

So, we can use the command:

linux ubd0=root_fs_slack8.1 U

eth0=ethertap,tap0,U
fe:fd:0:0:0:1,192.168.0.254

to permit UML to set up eth0 in the vir-
tual machine with its own IP address.

The IP address of real tap0 and virtual
eth0 can be the same for simpler config-
urations. (See [8] for more complex net-
work configurations.)

You then need to set up the interface
in the virtual machine (/etc/hosts,
/etc/resolv.conf, /etc/network, etc.) to
have fully operative Internet access in
the UML environment.

Conclusion
User-Mode Linux provides a quick and
convenient means for creating virtual
Linux systems in Linux. You can use
can UML as a tool for planning, model-
ing, testing, and troubleshooting Linux
systems. UML is also the basis for many
other open source projects and expe-
riments, as well as for business appli-
cations and personalized hosting ser-
vices. Perhaps User-Mode Linux is not
so easy to install and configure, but if
you can get it working, you’ll find many
uses for it. ■

[1] User-Mode Linux Homepage:
http://user-mode-linux.sourceforge.
net

[2] UML on 2G/2G hosts:
http://user-mode-linux.sourceforge.
net/UserModeLinux-HOWTO-4.
html#2G-2G

[3] Official Linux kernel 2.4.27:
http://ftp.ca.kernel.org/linux/kernel/v2.
4/linux-2.4.27.tar.bz2

[4] UML patch for kernel 2.4.27:
http://prdownloads.sourceforge.net/
user-mode-linux/uml-patch-2.4.27-1.
bz2

[5] UML Downloads:
http://user-mode-linux.sourceforge.
net/dl-sf.html

[6] Root filesystem list:
http://user-mode-linux.sourceforge.
net/dl-jails-sf.html

[7] UML Utilities: http://prdownloads.
sourceforge.net/user-mode-linux/
uml_utilities_20040406.tar.bz2

[8] UML Network configuration:
http://user-mode-linux.sourceforge.
net/networking.html

[9] Compiling the kernel:
http://user-mode-linux.sourceforge.
net/compile.html

[10] Kernel debugging:
http://user-mode-linux.sourceforge.
net/debugging.html

[11] UML debugging session:
http://user-mode-linux.sourceforge.
net/debug-session.html

[12] QEMU Homepage:
http://fabrice.bellard.free.fr/qemu/

[13] Bochs homepage:
http://bochs.sourceforge.net

[14] QEMU Article “Virtual Benefits”:
http://www.linux-magazine.com/
issue/52/QEMU_System_Emulation.
pdf

[15] SELinux and UML:
http://www.golden-gryphon.com/
software/security/selinux-uml.xhtml

INFO

Figure 5: The COW files of two UML Virtual Machines.

Figure 6: A UML Virtual Machine with network services available.

Fabrizio Ciacchi (http://fabrizio.
ciacchi.it – fabrizio@ciacchi.it) is an
italian student of Computer Sci-
ence at the University of Pisa. His
main activities are studying Linux,
developing Web Sites in PHP, and
programming in Java. He also
works as a consultant for several
companies and writes articles on
Linux.

TH
E

A
U

TH
O

R

