
48

which in turn start other agents. It is
common for multiple hotplug agents to
work together. For example, when you
connect an external hard disk, first the
USB agent loads, then the SCSI agent
loads to mount the individual partitions
as SCSI devices with the help of the usb-
storage module. If you attach a Bluetooth
dongle, the USB agent runs first, fol-
lowed by a Bluetooth agent called blue-
tooth.agent.

Blacklisting Drivers
The /etc/hotplug/blacklist file has a list
of modules that no agent is allowed to
load. The list includes the modules that

manages the actions associated with a
hotplug event. In this case, the agent
manages the task of adding and register-
ing the new device.

The steps the agent performs may
vary depending on your distribution and
the type of hardware you are installing.
Since most hotplug-capable hardware
attaches to a USB port, the USB agent is
perhaps a good example. The USB agent
first checks if a driver is available for the
new device (for example, isdn) and then
calls modprobe to load the module. If the
agent finds a script with the same name
as the driver in the /etc/hotplug/usb/
directory, the agent runs that script.

The act of loading modules typically
triggers a few more hotplug events,

I
s it really that difficult? You only
wanted Linux to launch the right
program when you attached your

new digital camera, but the operating
system has decided to sit this one out.
This scenario is all too common,
although the situation has started to
improve. Linux should handle any kind
of hardware correctly, but the ability to
manage USB and Firewire devices
plugged in or unplugged while the com-
puter is running (known as hotplugging
[1]) has become increasingly important.
This article explains what a modern
Linux system does with the devices you
attach to it, and why not everything
works as planned.

Agents at Work
When you plug in a device that
supports hotplugging, the kernel
sends an event signal to the hot-
plug system. The hotplug system
uses Udev to create a device file
for the device and then calls the
appropriate agent. An agent is a
script, typically stored below
the /etc/hotplug/ directory, that

Hardware which just works is what

every user wants. Current Linux

distributions go a long way to

fulfilling that dream. In this article,

we will be investigating how the

hotplug system works.

BY OLIVER FROMMEL, MARCEL HILZINGER AND RENÉ REBE

HOT WIRED
Hotplugging with Udev, HAL, and D-Bus

HOT WIRED

Schlagwort sollte hier stehenLINUX USER HotpluggingKNOW-HOW

48 ISSUE 53 APRIL 2005 W W W . L I N U X - M A G A Z I N E . C O M

Figure 1: After you modify the

Udev configuration file, the

Gnome desktop icon has a

more intuitive label.

Figure 2: The hal-device-manager with detailed information for the

Prism2 WLAN adapter.

the system loads via other services, as
well as modules that prevent power
management.

Linux typically requires a device file in
order to interact with a device. In a hot-
plug situation, that device file must be
created on the fly when the new device
is detected. As you learned in the pre-
ceding section, hotplug uses Udev to cre-
ate the device file prior to summoning
the agent.

Device Files as Needed
Udev [1] is the designated successor to
static device files, and most current dis-
tributions now use it. The purpose of
Udev is to create device files based on
rules specified in a Udev configuration
file. For example, if you want to assign a
device file other than sda1 to your MP3
stick, you could specify this requirement
in your own Udev rule.

Udev rules are stored in /etc/udev/
rules.d. If you look in that directory, you
will find a file that describes typical
devices: in Ubuntu this is udev.rules,
whereas Fedora uses 50-udev.rules. Udev
reads the files in alphabetic order. If you
want to load your own Udev rule before

the global rules, you will need to assign
a filename to ensure that this happens,
for example 10-local.rules. The following
entry is good for a no-name MP3 stick:

BUS="usb", SYSFS{idProduct}=U
"1000", SYSFS{idVendor}="10d6",U
NAME="mp3disk"

This stops the Gnome desktop from dis-
playing the generic sda1 label; instead
the label is a more intuitive mp3disk
(Figure 1). The lsusb tool, which lists the
attached USB devices, will help you find
the USB IDs. If a device file exists,
udevinfo -q path -n /dev/devicefile dis-
plays the path in the SysFS (see “Box2:
Device files with Udev”), but it does not
give you the mount point /sys. You need
the path as a parameter (-p), with this
command to get SysFS information:

udevinfo -a -p /block/hda/hda1
...

SYSFS{idVendor}="10d6"
...

This command helps you discover the
device-specific values you need for spe-
cial configurations. There is a detailed
how-to for creating Udev files at [2]. The
Fedora site has a short overview of the
Udev system [3].

Your Own Usermaps
A usermap file contains one or multiple
IDs that uniquely identify a hardware
component. When a device that matches

49

KNOW-HOWHotplugging

49ISSUE 53 APRIL 2005W W W . L I N U X - M A G A Z I N E . C O M

Figure 3: In Gnome 2.8, gnome-volume-

properties specifies which application is run

for which hotplug event.

The Suse Linux approach to hotplugging
is different in parts, and the current ver-
sion does not use the HAL architecture.
It distinguishes between (currently)
unknown and configured devices and
uses the hwup, hwdown, hwstatus, and
hwscanqueue programs to support hot-
plugging. Suse stores a configuration
file in /etc/sysconfig/hardware for config-
ured devices. When the kernel registers
a hotplug event, /sbin/hotplug loads the
appropriate kernel module.

No HAL

After loading the kernel module, hwup
checks if there is a configuration file for
the device below /etc/sysconfig/hard-
ware and, if so, loads the modules speci-
fied by the file. If hwup fails to locate a
configuration file, it attempts to locate
the required modules by reading the
*.usermap files in /etc/hotplug/, just as
other distributions do.

In the future, Suse is looking to create a
file below /etc/sysconfig/hardware for
every hardware component and to com-
pletely do without usermap files. Com-
paring the last two Suse versions shows
that Suse is already heading in this
direction. Whereas 9.1 only creates con-
figuration files for network devices, 9.2

also has them for hard disks, CD/DVD
drives, and a variety of USB devices.

After hwup has finished, the hotplug
agent launches. In the case of a USB
event, the agent will be the USB agent;
for network events, the agent will be the
network agent; and so on. If the hotplug
system fails to find a suitable agent, it
launches a generic agent to create the
required device files. In Suse Linux 9.2,
the agent also looks in /etc/sysconfig for
a configuration file for the service and
launches the appropriate service.
Suse Linux has a simple approach to
bug hunting that makes hotplug slightly
more verbose. To enable this, set the
variable HOTPLUG_DEBUG in
/etc/syconfig/hotplug to yes or even to
max. The latter setting tells the system
to log every single step.
Desktop Icons on Suse Linux

Suse Linux Version 9.1 or later does not
create desktop icons for drives. Instead,
users are expected to use the My Com-
puter icon (just like in Windows) or to
access drives directly via the drives:/
URL. This solution can be a less than
perfect for USB memory sticks. By
default, Suse opens a Konqueror win-
dow with the content of the stick parti-

tion when you attach a memory stick,
but if you have disabled this feature, or if
you simply close the window, it’s back to
My Computer.
Suse Linux uses its own icons for the dri-
ves:/ URL. They are located below /usr/
share/hotplug/DesktopTemplates/. KDE
adds the name to the ~/.kde/share/con-
fig/kio_drivesrc file. You can edit the file
to assign intuitive and unique names to
your devices. For example, if you have
two memory sticks, you can simply edit
the entries below [Used Names] to dis-
tinguish between them.
To enable the device icons for the KDE
desktop in Suse, you first need to install
the kdebase3-extra and kdemultimedia3-
extra packages. Take care if you have
Suse 9.2: the packages are only on the
DVD version! After completing the
install, right click on the KDE desktop
and select Configure desktop… in the
drop-down menu. In the Behavior win-
dow, select Device icons and then check
Enable icons on desktop. You can then
use the list to specify which device icons
you want to display on the desktop.
After installing kdebase3-extra and kde-
multimedia3-extra, the devices:/ URL will
also work in Konqueror.

Box 1: Hotplug on Suse Linux

prism2 0x0003 0x0846 0x4110
0x0000 0x0000 0x00 0x00 0x00
0x00 0x00 0x00 0x0

Most maps look like this and only use
the first four values. The first value spec-
ifies which program the hotplug system
should run if the values that follow in
that line apply. The first numerical value
is a bit field that specifies the required
number of matching values. If you want
hotplug to check the first two values,
you need 0x0003 . The first bit repre-
sents a value of 1, the second is 2, and
that makes 3 altogether. Hotplug ignores
the remaining columns in this file, and
that explains why the remaining values
are 0x00.

The script we want to run, prism2,
needs to be in the same directory, and
we need to run chmod +x to make it
executable. In our example, it runs the
rc.wlan start script from the Prism2
package, configures the wlan0 network
interface, and then asks the DHCP server
for an IP address:

#!/bin/sh
/etc/rc.wlan start
/sbin/ifconfig wlan0 up
/sbin/dhclient wlan0

Following these changes, the USB WLAN
adapter works immediately when
plugged in. Unfortunately, our attempts
to configure a DV video camera in the

one of these entries is plugged into the
system, the subsystem automatically
runs the specified program, which can
be a script.
This allows you to enable a WLAN USB
adapter that your distribution does not
properly configure. In our lab, the hot-
plug system detected the adapter with
the Prism2 chipset, but it failed to run
the script that launches the required
WLAN functions.

The lsusb command gives us the USB
ID for the plugged in device. The vendor
ID in our example is 0x0846, and the
device ID is 0x4110.

You now need to add the following
hexadecimal values to a new file called
/etc/hotplug/usb/prism2.usermap:

HotpluggingKNOW-HOW

50 ISSUE 53 APRIL 2005 W W W . L I N U X - M A G A Z I N E . C O M

In Linux, applications use device files to
access hardware. These special files
below the /dev directory are defined by
reference to their type, as well as their
major and minor numbers, which link
them to the kernel.

In the past, this directory has been a
repository for all kinds of device files; for
IDE and SCSI hard disks, USB, IEEE
1394, and virtual devices. This meant
that the /dev directory typically had
thousands of entries.

This system has a few disadvantages: it
does not tell you which devices really
exist or have been correctly identified by
drivers. Additionally, device files can
change from case to case; in other
words the random order in which the
device was attached to the system
decides which SCSI device will react to
/dev/sg2.

New Worlds

Udev [1] is the designated successor to
static device files, and most current dis-
tributions now use it. Udev relies on the
hotplugging mechanism that generates
device files as required. When a device
changes, the kernel calls the program
specified in /proc/sys/kernel/hotplug; this
is typically /sbin/hotplug.

Depending on the device type, the pro-
gram will load modules, modify access
privileges, configure network devices, or
in the case of Udev, manage device
nodes.

The Udev subsystem needs some
details to be able to create a file: the
device type (char or block) and the major
and minor numbers. Udev on kernel 2.6
or later references the sys filesystem
(SysFS, which is normally located below
/sys) to discover this information.

Block devices are located below /sys/
block and character devices below /sys/
class. The major and minor numbers are
stored in a dev file. For example, the fol-
lowing command gives you the num-
bers for the first IDE hard disk, hda:

cat /sys/block/hda/dev
3:0
Udev can parse any SysFS information,
such as the device class, name, numbers,
etc., to create appropriate devices. If the
names are stable, Udev can even run
complex programs to check whether it
should configure a printer that has just
been switched on as /dev/usb/lp0 or /dev/
usb/lp1, basing the decision on the serial
number of the printer. It is even possible
to use arbitrary names and call nodes,
/dev/lp-epson and /dev/lp-kyocera, for
example.

Setting up Udev

Udev has two configuration options.
Files in /etc/udev/rules.d/ specify the
device file names, others in
/etc/udev/permissions.d/ specify the
privileges. The default rules create
device files that use the familiar Linux
names.

At the start of each rule, there are one or
more conditions that need to be fulfilled
if Udev is to create a device file. The
name then follows. The following is a
typical entry for USB printers:

BUS="usb", KERNEL="lp[0-9]*", U

NAME="usb/%k"
If the device is attached to the usb bus,
and the internal kernel name is lp with
an arbitrary number, Udev creates a file
with the kernel name (as indicated by
the %k) in the /dev/usb directory.

Besides static rules of this type, it is also
possible to call external programs. The

manpage has an example for IDE CD
ROMs that checks if a directory called
/proc exists to identify the device as a CD
ROM:

KERNEL="hd[a-z]", U

PROGRAM="/bin/cat /U
proc/ide/%k/media", U

RESULT="cdrom", U

NAME="%k", SYMLINK="cdrom%e"
In this example, Udev calls /bin/cat for
the /proc file for all devices with names
that start with hd. If file specifies cdrom
as the medium, Udev will remember the
name but will additionally create a sym-
bolic link for cdrom. The %e tells Udev to
select the next free number if a file of the
same name already exists.

Using device serial numbers to assign
an intuitive name is a useful approach:

BUS="usb", SYSFS{serial}=U
"HXOLL0012202323480", U

NAME="lp-epson"
This rule tells Udev to create a device
file, /dev/lp-epson, if it finds a device
with the above mentioned number in its
serial file below the SysFS tree.

Udev and Privileges

Rules for access privileges comprise a
single line with colon-separated values
for the name, owner, group, and privi-
leges.

usb/lp*:root:lp:0660
All device files called usb/lp* belong to
the user root and the group lp. Access
privileges are specified in octal notation.

The new hotplugging model is so suc-
cessful that it is even used to boot the
system. It calls udev with appropriate
variables for any known devices in
/sys/class and /sys/block.

Box 2: Device Files with Udev

same way failed due to the sorry state of
the Firewire subsystem. The IEEE1394
driver for the current kernel does not
give us the SysFS information we need,
so we have no alternative but to run
mknod to create a device file.

From the Hardware to the
Application
Another layer of the hotplugging system
provides an interface between the hard-
ware and the application. The Hardware
Abstraction Layer (HAL, [4]) has
detailed information for hardware,
which is stored in device information
files (.fdi).

You can use the HAL layer to make
changes for special devices. For exam-
ple, one user solved the issue of his iPod
not de-registering correctly [5].

FDI files are XML-formatted files that
provide detailed device descriptions. The
lshal command gives us the details. The
hal-device-manager has the same data
but with a neat GUI (Figure 2). Suse
users will have to make do without HAL
components, as Suse has a different way

of handling hardware details (see “Box
1: Hotplug on Suse Linux”).

In the future, applications will be able
to query hardware details via the D-Bus
[6]. D-Bus is a software communication
system into which applications can slot
and register themselves for certain
events. For example, a video editing pro-
gram might need to know when a new
camera is attached to the PC. The
gnome-volume-properties program,
which recent Gnome versions have, uses
D-Bus and HAL to associate applications
with hotplug events (Figure 3).

We can expect D-Bus to play an impor-
tant role in inter-application communi-
cations under Gnome, although there are
not many applications that leverage this
ability at present.

All for the Best – Someday
Despite all the progress that has been
made with respect to device detection,
things are still not perfect. The hotplug
system agents need detailed hardware
information, and this information will be
obsolete on a system that is a few

months old. An online database for
hardware components might help; users
could contribute details they had worked
out in FDI format.

The HAL project is moving in this
direction, as it gives the hotplugging sys-
tem information that the kernel can’t
provide. A number of distributions have
already started using it. We’ll hope that
Suse will follow the trend; the more con-
sistent hardware management is in
Linux, the better. ■

KNOW-HOWHotplugging

[1] Linux Hotplug:
http://linux-hotplug.sourceforge.net

[2] Writing your own Udev rules: http://
www.reactivated.net/udevrules.php

[3] Fedora Udev documentation:
http://fedora.redhat.com/docs/udev

[4] HAL: http://www.freedesktop.org/
Software/hal

[5] iPod with Udev:
http://www.kgarner.com/blog/
archives/2005/01/11/fc3-hal-ipod/

[6] D-Bus: http://www.freedesktop.org/
Software/dbus

INFO

WWW.LINUX-MAGAZINE.COM/NEWSLETTER

Want to know what’s up next?Want to know what’s up next?
Subscribe Subscribe to Linux Magazine Preview,

our free monthly email newsletter!

