
60

You have to be a very special kind
of person to actually enjoy eval-
uating logfiles. But you have to

admit that the logfiles in /var/log give
administrators exactly the kind of infor-
mation they need to discover the origins
of mysterious system errors. Log files
also provide information on whether ser-
vices on the system are working.

If you have any trouble installing a
daemon or running a script, the logs can
tell you what went wrong. Paranoid ad-
mins – and that should be all of us –
check their systems for unauthorized
access and block any traces they find.

You can also use log information to
control a computer’s behavior. For exam-
ple, an SMTP server could view an IP

address as authorized to send mail if the
logfile has a successful login entry for
the mailbox. Or a firewall could deploy a
packet filter to automatically block an IP
address following an obvious attack.

Even if you don’t read your own logs,
you can still trip over them. The logfiles
consume more and more space on your
hard disk – or at least on the /var parti-
tion. The gradual consumption of disk
space will eventually force your com-
puter to its knees.

Sensible logfile handling – evaluation,
archiving, deleting – is a traditional ad-
ministrative task. But now that Linux
has started to conquer the desktop, it is
unreasonable to expect users to handle
log file administration for themselves.
Some fully automated tools were intro-
duced years ago to assist with the task
of managing logfiles.

Don’t Delete, Rotate!
A Linux system does not simply delete
logfiles, but rotates them. It first re-
names a file such as XXX.log to XXX.log.
o (or something similar). This step is im-
portant, as the automatic cleaning pro-
gram has no way of knowing if a process
is currently accessing the logfile. If a pro-
cess has opened the logfile, it possesses
a filehandle for exactly this file and will
write to the file regardless of whether
another process has renamed, or de-
leted, the file in the meantime.

After renaming the file, the protocol
cleaner needs to recreate new (blank)
logfiles and tell the processes concerned

that the logfiles have changed. The writ-
ing processes then need to close any log-
files they are using and reopen those
files, thus receiving the current (blank)
version, which they can then populate.

Things get complicated at this junc-
ture, as the central logfile management
tool needs to find out which processes
write to which logfiles. The fact that
many daemons use syslog makes this
easier to handle, but there are still popu-
lar packages – such as Apache – that
insist on using their own logfiles for
performance or other reasons.

Modular Configuration
To establish this mechanism on a freely-
configurable and extensible Linux sys-

Every multi-purpose Linux system produces an enor-

mous amount of log data. To prevent your hard disk from

overflowing, a rotating helper application archives logs

and gets rid of obsolete data. BY MARC ANDRÉ SELIG

Insider Tips: Logrotate

TURNING
THE LOGS

01 weekly

02 rotate 4

03 create

04 compress

05 delaycompress

06

07 /var/log/wtmp {

08 missingok

09 monthly

10 create 0664 root utmp

11 rotate 1

12 }

13

14 include /etc/logrotate.d

Listing 1: logrotate.conf
Sample File

01 /var/log/apache2/*.log {

02 missingok

03 rotate 52

04 notifempty

05 create 640 root adm

06 sharedscripts

07 postrotate

08 if [-f /var/run/apache2.
pid]; then

09 /etc/init.d/apache2
restart >/dev/null

10 fi

11 endscript

12 }

Listing 2: /etc/ logrotate.d/
apache2

w
w
w
.sxc.h

u

Admin Workshop: LogrotateSYSADMIN

60 ISSUE 62 JANUARY 2006 W W W. L I N U X- M A G A Z I N E . C O M

61

tem, clever developers came up with the
Logrotate package. Logrotate uses a
modular configuration like many other
centralized packages. The core variables
are set by a central configuration file.
The file makes a note of how often
Logrotate should rotate the logfiles, how
long it should keep old logs, whether to
compress the files (starting in the second
generation, as the logfile that has just
been rotated might still be in use!), and
so on. The central configuration file is
titled /etc/logrotate.conf.

Additionally, each software package
can add an entry to the Logrotate config-
uration file during the install. Of course,
it should not write to the central file –
this could lead to nasty inconsistencies;
instead, Logrotate uses a configuration
directory titled /etc/logrotate.d.

Packages can store their own minia-
ture Logrotate configuration files under
the package name. These files say what
to do with rotated logfiles. The configu-
ration entry for a proxy server might be
/etc/logrotate.d/squid, for example.

An Example
Listing 1 gives an example of a minimal-
ist /etc/logrotate.conf. All it does is set a
few defaults: based on this configura-
tion, Logrotate would rotate the logfiles
weekly and keep a total of four previous
versions. After each rotation, the tool
would create a new logfile and compress
the pervious week’s version.

Listing 1 specifies the logfile for Logro-
tate to manage, /var/log/wtmp. Logro-
tate only creates this file once a month,
handing the permissions for the file to
root and the utmp group. The rotate 1
keyword in line 11 tells Logrotate to keep
just one previous version.

logrotate.conf does not specify how to
handle the other logfiles; instead this is
handled by configuration snippets from
/etc/logrotate.d, which the include direc-
tive in line 14 enables. Include ignores
any backup files created by editors, files
from version control systems, fragments
left over by package managers (for ex-
ample, *.rpmsave or *.dpkg-old), and
files with the extension .disabled.

Special Treatment for
Apache
The /etc/logrotate.d file includes the file
apache2, with an example for Apache
(Listing 2) containing special options for

rotating Apache logs. This listing starts
with the path to the logfiles – Apache is
set up to store logfiles below /var/log/
apache2.

The default settings from Listing 1
apply to all the files in /var/log/apache2;
first: Logrotate rotates the files on a
weekly basis, packs the files after an-
other week, and creates a new file for
each file it rotates. Line 5 in Listing 2
assigns specific access privileges to the
new and empty logs to prevent normal
users from viewing them.

One assumption the example makes is
that web server logs are very important
for system operations and billing. We
need the system to keep the logs for a
whole year, creating 52 generations at a
rate of one generation per week. If
Apache fails to launch for some un-
known reason, which would lead to a
missing log, the program will not rotate,
as stipulated by the notifempty keyword.

Listing 2 also contains instructions on
how to let Apache know when files have
been rotated. The message is sent after
the event – as indicated by the postrotate
keyword (the keyword for a message
prior to rotation is prerotate.) The key-
word is followed by a few lines of shell
script, which close with the endscript
keyword. Lines 8 through 10 say: if
Apache is running – that is, if the PID
file exists – the matching Init script will
handle the relaunch.

The sharedscript keyword in line 6
tells Logrotate to call this info script
once only, even when rotating multiple
logfiles. It launches once rotation has
been completed for all logfiles.

Sophisticated
The settings in Listings 1 and 2 give you
examples of how to configure the stan-
dard daemons on common Linux distri-
butions. But logrotate has more tricks up
its sleeve – Listing 3 configures a packet
filter, for example. This setup assumes
that the packet filter logs will be stored
in ipfilter-bulk.log. The file could be
enormous on a typical server, and its
sheer size would prevent manual evalua-
tion. A script (which is not printed here
for reasons of space) thus parses the file
for relevant, critical information and
writes this information to the ipfilter-
high.log file.

Listing 3 needs to treat these two files
quite differently. It rotates ipfilter-bulk.

log whenever the file reaches a size of 20
Mbytes, but normally no more than once
a day. Logrotate compresses the old log-
file using bzip2. As this is a syslog-based
logfile, the next step is to notify the dae-
mon of the logfile changes; the post-
rotate directive in the appropriate Init
script is used to do this, as in the previ-
ous Apache example.

ipfilter-high.log needs a different kind
of treatment. As it might contain time-
critical information, logrotate rotates this
file once a day – and additionally mails
the administrator. If the administrator
happens to be slacking (although it is
not typical of administrators to do so),
this gives the admin fair warning and
enough time to take care of the logs.
logrotate normally dispatches the oldest
logfile, but the mailfirst directive tells it
to send the current file just after rota-
tion.

Critical data is not simply discarded
after a few weeks but kept for forensic
investigation – in our case, 730 days, or
two years if you prefer. To prevent the
old logfiles from cluttering up the /var/
log directory, logrotate moves them into
a separate directory below /var/log/
ipfilter-old.d. ■

01 /var/log/ipfilter-bulk.log {

02 size 20M

03 rotate 10

04 compress

05 compresscmd bzip2

06 compressext bz2

07 postrotate

08 /etc/init.d/sysklogd
reload >/dev/null

09 endscript

10 }

11

12 /var/log/ipfilter-high.log {

13 daily

14 rotate 730

15 olddir /var/log/
ipfilter-old.d

16 nocompress

17 mail <I>ich<I>@<I>meine.
domain.de<I>

18 mailfirst

19 }

Listing 3: Two Different
Logs on a Packet Filter

SYSADMINAdmin Workshop: Logrotate

61ISSUE 62 JANUARY 2006W W W. L I N U X- M A G A Z I N E . C O M

