
21

Linux may not be as vulnerable as
Windows, but if you think Linux
viruses don't exist, you’d better

think again. Virus writers have any num-
ber of possibilities for passing viruses into
Linux, although the damage will be lim-
ited if you’re careful and follow a few
simple rules. In this article, I’ll describe
some examples of how Linux viruses
work, and I’ll give you some tips for
keeping your system safe.

A Theoretical Linux Virus
Most Linux distributions come with
gzexe, a small utility that compresses ex-
ecutable files and automatically uncom-
presses them when they’re started. For
example, you can copy /bin/date to /tmp
and run gzexe /tmp/date to compress the
executable file. The size of /bin/date and
/tmp/date should differ, and the latter
should be noticeably smaller. Now try to
run both files. Do you notice any differ-
ence?

Every executable compressed with
gzexe includes a special stub at the be-
ginning of the file. When you open
/tmp/date with your favorite editor, you
will notice that the stub is just a plain
shell script. Below the stub, there is bi-
nary data with the compressed execut-
able. The shell code is responsible for
decompressing the data into a temporary
file and executing it. The whole process
is transparent to the end user, and on
fast computers, the delay in running
compressed files is marginal.

Now think about a modified stub that
does the following things before de-
compressing and running the original
code:
• searches $PATH for a randomly

writable executable file (or a file
owned by a current user) that is not
a shell script;

• compresses the executable file (it can
include the code from the gzexe shell
script) and inserts the same modified
stub into it.

This stub fits Wikipedia’s definition of a
virus as “a self-replicating program that
spreads by inserting copies of itself into
other executable code or documents”[1].
Let’s call it Linux.Gzipper.

As this example shows, it is not a big
challenge to write a simple Linux virus.
It shouldn’t be a surprise that virus writ-
ers can also use more sophis-
ticated methods. The ELF (Ex-
ecutable and Linking) format
of Linux executable files is
very similar to the PE (Porta-
ble Executable) format used on
Microsoft Windows and provides
almost the same
functionality. That
means, virus writ-
ers can use many
advanced

infection techniques of the executable
files they developed on Windows during
the last decade. Of course, a number of
ELF-infecting viruses already exist. In
fact, some viruses can even infect both
PE and ELF files. However, even the
most advanced Linux viruses will face
the same problem that our simple Gzip-
per faces: it’s not that easy to damage a
Linux system.

Native Anti-virus
Protection
Virus writers exploit the fact that most
users of commercial operating systems
are accustomed to working at a highly
privileged level that allows direct ma-
nipulation of critical resources for
the system.

In Linux, and UNIX in gen-
eral, it is a fundamental
principle that one
should only use the
root account for
administrative
actions and

Some say an attack is looming, and others say we don’t have to worry.

What’s the real story on viruses in Linux?

BY TOMASZ KOJM

The ways of viruses in Linux

HOW SAFE?

COVER STORYViruses in Linux

21ISSUE 62 JANUARY 2006W W W. L I N U X- M A G A Z I N E . C O M

never for regular work. As long as this
rule is obeyed, most viruses can’t do any
harm globally because the mechanism of
file permissions protects the system and
the individual users’ files. Of course, a
virus can try to exploit security bugs in a
target system to escalate privileges, but
then, unpatched systems are open to
other kinds of attacks, not just viruses.

Our theoretical Gzipper searches
$PATH for writable executable files it
could infect. When Gzipper is executed
by an unprivileged user, it will only be
able to infect executables owned or writ-
able by this user, and in most cases, it
will fail to spread out of the user’s envi-
ronment. Unfortunately, there are some
“user friendly” Linux distributions that
promote the bad model of a highly privi-
leged single user, which opens a wide
gate for virus attacks and allows the
virus to infect core parts of the operating
system. Such distributions can be called
“virus friendly” as well as “user
friendly.”

The Many Faces of Linux
Another thing that makes it hard for vi-
ruses to spread is the number of Linux
distributions and supported architec-
tures, and the many technical differences
between them. Of course, a binary virus
compiled for the x86 architecture will
not run on SPARC and vice versa. Even
“portable” viruses written in script lan-
guages like Perl or shell may fail to run if

they depend on elements that are not
available on the victim’s system.

Spreading Problems
Plain viruses, in contrast to worms, have
no mechanism to replicate between com-
puter systems. They can only spread
along with the host file, contaminating
other files in the process. These days,
most Linux users and sysadmins only in-
stall software from their distributions or

from official sources that are considered
reliable. Additionally, official packages
are usually digitally signed and can be
verified before installation.

Unfortunately, even the best mecha-
nisms cannot prevent human error.

In September 2005, the official Korean
versions of Mozilla Suite 1.7.6 and
Thunderbird 1.0.2 for Linux were found
to be infected with the Linux.RST.B
virus. The incident was very serious be-
cause the web browser is most often in-
stalled globally from the root account to
make it available to all users on a sys-
tem. Execution of the infected suite from
a privileged account could allow the
virus to easily infect system files. The
Mozilla Foundation published a security
advisory, telling Korean users who in-
stalled affected products to scan their
systems with an anti-virus scanner[2].

Such incidents are still very marginal,
but it’s likely they will intensify in the
future when more and more software be-
comes available in binary form from
third party sites.

The Real Stuff
Computer viruses very often carry a pay-
load, which is a special action they take
after spreading. The payload of the
Linux.Gzipper virus was to compress
target files before infection. While in
some cases even such potentially inno-

01 testuser@testsystem:~/testfiles$ ls -l

02 total 727

03 -rwxr-xr-x 1 testuser testuser 49084 Sep 4 03:32 cp

04 -rw-r--r-- 1 testuser testuser 651 Jul 28 2004 crontab

05 -rwxr-xr-x 1 testuser testuser 88038 Nov 6 17:51 date.infected

06 -rw-r--r-- 1 testuser testuser 1489 Feb 10 2004 fam.conf

07 -rw-r--r-- 1 testuser testuser 292 Jun 18 02:05 hosts

08 -rwxr-xr-x 1 testuser testuser 71996 Sep 4 03:32 ls

09 -rw-r--r-- 1 testuser testuser 1426 Nov 6 01:44 passwd

10 testuser@testsystem:~/testfiles$ clamscan --no-summary

11 /home/testuser/testfiles/cp: OK

12 /home/testuser/testfiles/ls: OK

13 /home/testuser/testfiles/crontab: OK

14 /home/testuser/testfiles/hosts: OK

15 /home/testuser/testfiles/fam.conf: OK

16 /home/testuser/testfiles/date.infected: Linux.Rst.A FOUND

17 /home/testuser/testfiles/passwd: OK

Listing 1: Start with an Infected File

01 testuser@testsystem:~/testfiles$./date.infected

02 Sun Nov 6 18:02:46 CET 2005

03 testuser@testsystem:~/testfiles$ ls -l

04 total 1010

05 -rwxr-xr-x 1 testuser testuser 97890 Nov 6 18:02 cp

06 -rw-r--r-- 1 testuser testuser 651 Jul 28 2004 crontab

07 -rwxr-xr-x 1 testuser testuser 88038 Nov 6 17:51 date.infected

08 -rw-r--r-- 1 testuser testuser 1489 Feb 10 2004 fam.conf

09 -rw-r--r-- 1 testuser testuser 292 Jun 18 02:05 hosts

10 -rwxr-xr-x 1 testuser testuser 120802 Nov 6 18:02 ls

11 -rw-r--r-- 1 testuser testuser 1426 Nov 6 01:44 passwd

12 testuser@testsystem:~/testfiles$ clamscan --no-summary

13 /home/testuser/testfiles/cp: Linux.Rst.A FOUND

14 /home/testuser/testfiles/ls: Linux.Rst.A FOUND

15 /home/testuser/testfiles/crontab: OK

16 /home/testuser/testfiles/hosts: OK

17 /home/testuser/testfiles/fam.conf: OK

18 /home/testuser/testfiles/date.infected: Linux.Rst.A FOUND

19 /home/testuser/testfiles/passwd: OK

Listing 2: Passing the Infection

Viruses in LinuxCOVER STORY

22 ISSUE 62 JANUARY 2006 W W W. L I N U X- M A G A Z I N E . C O M

cent payloads may cause a serious sys-
tem malfunction, most of the real world
viruses are not as nice as Gzipper.

The RST virus that infected the
Mozilla Suite is one of the few Linux vi-
ruses seen in the wild and probably the
most effective one. The first version of
this virus was discovered in late 2001.
The name stands for “Remote Shell Tro-
jan.” RST will try to infect executable
files in the current directory, and if it has
enough privileges, it will also infect the
system files in /bin.

Listing 1 shows a directory with a
number of clean files and one file in-
fected with the virus. Running date.in-
fected as an unprivileged user results in
infection of executable files in the cur-
rent directory (Listing 2). Additionally,
the virus activates its payload and starts
a backdoor server listening on the UDP
socket (Listing 3). Now, an attacker with
knowledge of a special protocol can con-
trol the backdoor and spawn a remote
shell on the infected system.

There are not many Linux viruses, and
most of them were not as successful as
RST. However, some of the viruses that
do exist implement very interesting in-
fection techniques. Linux.Svat is an ex-
ample of such a virus. Instead of direct
infection, it attempts to modify the oper-
ating system to create infected files. List-
ing 4 shows the compilation process of a
standard “Hello, World” program. Svat’s
idea is based on the design of the com-
piler. When GCC encounters an #include
<file.h> macro, it first looks for the
header file file.h in /usr/local/include
and later in /usr/include, which is the di-
rectory where all important header files
are installed. The stdio.h file is one of
the most used header files.

As shown in Listing 5, when the
Linux.Svat infected file is run by root, it
installs a new header file in /usr/local/
include. The new stdio.h includes the
original one and additionally redefines
the system function close(), which now
calls the virus routine virfunc() before

closing file descriptors. The routine con-
tains bugs and will cause a segmentation
fault if it has no write access to the /usr/
local/include directory – the sloppy code
limits the virus’s chances to replicate.

The infection routine will be included
in every new compiled file that uses
stdio.h. Because our example hello.c file
doesn’t call the close() function, the
virus code in hello2 will never be acti-
vated.

"Safe Hex" in Linux
The rules for protecting Linux against vi-
ruses in are similar to the rules for other
systems:
1. Never use the root account for regular

work.
2. Avoid running binary files of unknown

origin. Check them with rootkit and
virus scanners first.

3. Carefully check every file before run-
ning it from the root account.

4. Keep your operating system up to
date. Regularly install official security
updates.

5. Secure your environment by using
hard-to-guess passwords and other
protections.

6. Track changes in the system using file
system integrity tools. ■

01 testuser@testsystem:~/testfiles$ ps aux

02 USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

03 [...]

04 testuser 28000 0.0 0.1 2116 876 ? S 18:02 0:00 ./date.
infected

05 [...]

06 testuser@testsystem:~/testfiles$ netstat -upan

07 [...]

08 udp 0 0 0.0.0.0:5503 0.0.0.0:*
 28000/date.infected

Listing 3: Backdoor is Born

01 testuser@testsystem:~/hello$ cat hello.c

02 #include <stdio.h>

03

04 int main(int argc, char **argv)

05 {

06 printf("Hello world!\n");

07 return 0;

08 }

09 testuser@testsystem:~/hello$ gcc hello.c -o hello1

10 testuser@testsystem:~/hello$./hello1

11 Hello world!

12 testuser@testsystem:~/hello$ ls -l

13 total 12

14 -rw-r--r-- 1 testuser testuser 100 Nov 6 18:46 hello.c

15 -rwxr-xr-x 1 testuser testuser 7340 Nov 6 18:50 hello1

Listing 4: Compiling Hello, World

01 root@testsystem:~/Svat#
clamscan --no-summary

02 /home/root/Svat/svat: Linux.
Svat.C FOUND

03 root@testsystem:~/Svat# ls -l
/usr/local/include

04 total 0

05 root@testsystem:~/Svat# ./
svat

06 Example file infected with
Svat.

07 root@testsystem:~/Svat# ls -l
/usr/local/include

08 total 16

09 -rw-r--r-- 1 root root
14614 Nov 6 19:10 stdio.h

Listing 5: Svat as root

Tomasz Kojm is a computer scientist
and the project leader of Clam Anti-
Virus project. ClamAV is an Open
Source (GPL) anti-virus toolkit for
Unix and Linux that is widely used
as a server-side email virus scanner. T

H
E

 A
U

T
H

O
R

Viruses in LinuxCOVER STORY

24 ISSUE 62 JANUARY 2006 W W W. L I N U X- M A G A Z I N E . C O M

