
70

If a backup script launches at 10 pm
and quits at 4 am, how long did it
take to run? Six hours? Well, it de-

pends. Just think about a process that
ran between March 26 and 27 in 2005
somewhere in the UK. The clocks were
put forward by one hour at 1 am, and
that would make five hours the right an-

swer. If the same process had run at the
same time in the USA, the answer would
have been six hours, as summer time
starts a week later in the US. But not in
Indiana, which had not yet introduced
summer time in 2005. In fact, Indiana is
introducing summer time this year
(2006, [2]). Fortunately, the DateTime

module ([5]) from CPAN knows all these
historical and future rules and provides
an easy interface to even the most com-
plex date calculations.

What if you wanted to know how long
the current summer time rules have
been in use in the UK? Listing 1 (dsthist)
discovers this by looking back from the
year 2006 and checking through the
month of March to find out if there is a
day where you end up at 5 a.m. when
adding three hours and one second to
00:59:59. If this happens, summer time
was used during this year, and the script

Because calendar rules are influenced by historical and political

decisions, date manipulations are riddled with pitfalls. Perl’s DateTime

module knows all the tricks. BY MICHAEL SCHILLI

01 #!/usr/bin/perl -w

02 use strict;

03 use DateTime;

04

 05 YEAR:

06 for my $year (

07 reverse 1964 .. 2006) {

08

 09 for my $day (1 .. 31) {

10

 11 my $dt = DateTime->new(

12 year => $year,

13 month => 3,

14 day => $day,

15 hour => 0,

16 minute => 59,

17 second => 59,

18 time_zone =>

19 "Europe/London",

20);

21

 22 $dt->add(

23 hours => 3,

24 seconds => 1

25);

26

 27 if ($dt->hour() == 5) {

28 print "$year: DST\n";

29 next YEAR;

30 }

31 }

32 print "$year: No DST\n";

33 last;

34 }

Listing 1: dsthist

w
w

w
.p

h
oto

ca
se.co

m

COUNTING OUT TIME
Exploring the Perl DateTime module

COUNTING OUT TIME

Perl: DateTime ModulePROGRAMMING

70 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

71

stops when it discovers that’s not the
case. The display shows that 1972 was
the first year with today’s summertime
rules:

...
1974: DST
1973: DST
1972: DST
1971: No DST

Summer in the City
Europe has fairly uniform daylight sav-
ing time rules, but this is not true of the
American continent. This not only ap-
plies to the various countries; even some
US states do their own thing, and there
are even a few counties that do not
adopt the same approach as the states in
which they are located. And to make
things even more complicated, the rules
have changed in the course of time.

Listing 2 (dstchk) uses all_names() to
ascertain all the timezones known to the
DateTime::TimeZone module (which is
also available from CPAN). It jumps to
the first of January in the timezone it is
investigating and adds six months. If this
returns a date with an hour value that is
not equal to zero, some kind of time ad-
justment must have occurred in the first
six months of the year, meaning that this
timezone must have switched to sum-
mer time in this period.

Zones are normally stored in a "Conti-
nent/City" format; examples are Europe/
London (for Great Britain), Europe/Dub-
lin (for Ireland), America/New_York (the
state of New York in the USA), America/
Vancouver (the Canadian state of British
Columbia), and Pacific/Honolulu (for
Hawaii). But if a county has deviated
from state rules at some time in the past,
an additional subdivision becomes nec-

essary, for example, America/Kentucky/
Louisville designates the US state of Ken-
tucky, with its biggest city Louisville. (As
you may be aware, Frankfort is the capi-
tal of Kentucky, although it is by no
means the biggest town in the state.)

To reflect the fact that the county of
Monticello in Kentucky was once (up to
the year 2000) part of a timezone
that is different from the one it is in now,
DateTime::TimeZone has an entry for
America/Kentucky/Monticello. Figure 1
shows the output from dstchk, showing
daylight saving timezones in green using
Term::ANSIColor.

DateTime can manipulate data for any
timezone you like, including dates in the
past, and timezones that have been
through changes. Lord Howe Island just
off the Australian coast has a quirky day-
light savings time rule that puts the
clock just half an hour forward or back.
Listing 3 (lord_howe) shows that adding
a second to 2005-10-30 01:59:59 returns
a local time of 02:30:00.

A DateTime object created by the new
constructor first exists in the special
floating timezone, if the time_zone pa-
rameter doesn’t specify the timezone ex-
plicitly. In this state, the timezone tem-
porarily adapts to match other DateTime
objects when calculations or compari-
sons are performed with them.

If you want to ignore daylight saving
time in your time calculations, you can
either use the "floating" zone, or you
can choose the daylight-saving-time-free
UTC (Universal Time Coordinated) time-
zone. Setting time_zone => "local" for
a DateTime object, to set the time to the
zone in which your computer resides,
forces DateTime to try out all kinds of
tricks to guess your timezone configura-
tion:

Figure 1: Have you ever wanted a quick

report on which areas of the American conti-

nent use daylight saving time?

01 #!/usr/bin/perl -w

02 use strict;

03 use DateTime;

04 use Term::ANSIColor

05 qw(:constants);

06

 07 for my $zone (DateTime::
TimeZone::all_names()) {

08

 09 my $from =

10 DateTime->now(

11 time_zone => $zone);

12

 13 $from->truncate(

14 to => "year");

15 my $to =

16 $from->clone()

17 ->add(months => 6);

18

 19 print "$zone: ";

20

 21 if ($to->hour() == 0) {

22 print RED, "no", RESET,

23 "\n";

24 } else {

25 print GREEN, "yes", RESET,

26 "\n";

27 }

28 }

Listing 2: dstchk

PROGRAMMINGPerl: DateTime Module

71ISSUE 64 MARCH 2006W W W. L I N U X- M A G A Z I N E . C O M

my $dt = DateTime->now(
 time_zone => "local");
print $dt->time_zone()->name();

This returned America/Los_Angeles on a
machine located in our Perlmeister lab
in San Francisco. Not bad.

Rotational Drag
How many seconds elapsed between
00:59:00 and 01:00:00 January 1 1999?
One minute, that is 60 seconds? Wrong!
Tip: At this point in time, the standard ti-
mezone, UTC, which is identical with
the Greenwich timezone, added an extra
leap second, which lead to a 61-second
minute!

As the site at [3] tells you, a second is
no longer defined as a fraction of one
day, and hasn’t been since 1967, but as a

function of the far more constant reso-
nance of the caesium 133 atom. The ro-
tational speed of the earth has slowly de-
creased over the last 40 years. As the
earth now takes slightly longer than 24
times 3600 atomic seconds for a single
rotation, a leap second has been added
here and there to official timekeeping
since 1972, every 1.5 years on average.
June 30 and December 31 are the refer-
ence dates. If official time is off by about
one second, the second is added at the
end of these days. This said, the earth
seems to be back up to speed; 2005 was

the first year since 1998 to need a one-
second boost. If the earth were to rotate
more quickly, the strict timekeepers
would simply subtract a leap second
from official time. However, this has
never happened in the brief history of
leap seconds.

Listing 4 (leapsec) starts in the year
1960 and moves gradually up to the year
2005, searching for leap seconds on June
30 or December 31. To do so, it sets the
time in the UTC timeone to 23:59:00,
adds 60 seconds, and checks if an un-
usual value of 60 is returned for the sec-
onds segment. If so, the minute in ques-
tion must have had 61 seconds, and we
have discovered a leap second. After
completing this search, the timezone is
set to “Europe/ London” by calling set_
time_zone(). A call to print outputs the
local time and the number of leap sec-
onds found so far.

Figure 2 shows the output. The differ-
ent local leap times on July 1 are a result
of historical daylight saving time
changes.

Pot-Holed Abstractions
Unfortunately, legacy timekeeping on
Unix systems, which counts the seconds
since 1970, does not take leap seconds
into consideration. Whereas the second

01 #!/usr/bin/perl -w

02 use strict;

03 use DateTime;

04

 05 my $dt = DateTime->new(

06 year => 2005,

07 month => 10,

08 day => 30,

09 hour => 1,

10 minute => 59,

11 second => 59,

12 time_zone =>

13 'Australia/Lord_Howe',

14);

15

 16 $dt->add(

17 DateTime::Duration->new(

18 seconds => 1

19)

20);

21

 22 # 2005-10-30 02:30:00

23 print $dt->date(), " ",

24 $dt->hms(), "\n";

Listing 3: lord_howe

Figure 2: Leap seconds from 1960 to today.

01 #!/usr/bin/perl -w

02 ##############################

03 # leapsec - Print years with
leap seconds

04 # Mike Schilli, 2005
(m@perlmeister.com)

05 ##############################

06 use strict;

07 use DateTime;

08

09 my $secs;

10

11 for my $year (1960..2005) {

12 for my $date ([30,6],
[31,12]) {

13 my $now = DateTime->new(

14 year => $year,

15 month => $date->[1],

16 day => $date->[0],

17 hour => 23,

18 minute => 59,

19 second => 0,

20 time_zone => "UTC");

21

22 my $later =
$now->clone()->add(

23 seconds => 60);

24

25 $later->set_time_
zone("Europe/London");

26

27 if($later->second() == 60)
{

28 print $later->dmy(), "
",

29 $later->hms(), ":
",

30 ++$secs, "\n";

31 }

32 }

33 }

Listing 4: leapsec

Perl: DateTime ModulePROGRAMMING

72 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

hand moved from 23:59:59 to 23:59:60
December 31, 1998, in the UK, the coun-
ter on Unix machines that follow the
POSIX standard moved from 915148799
to 915148800. The next virtual hop from
00:59:60 to 01:00:00, however, wasn’t re-
flected by any Unix time counter, both
points of time are correctly represented
by a Unix time value of 915148800.

If you subtract two Unix times from
one another, and calculate the UTC time
that has elapsed between them, you may
need to correct the results if a leap sec-
ond has occurred between the two dates.
For more details of this confusing ap-
proach, see [6] and [7].

DateTime provides the class method
from_epoch(epoch =>$time), which
constructs a DateTime object from a
Unix counter. The epoch() method of a
DateTime object does the opposite, re-
turning a counter value.

Listing 5 (leapreveal) shows what hap-
pens if you simply add the number of
seconds in 5000 days to the date
1.1.1990: the result of this calculation is
2003-09-09T23:59:53. In other words, the
answer reveals that there are 7 seconds
missing from the end of the day, caused
by leap seconds in between the two
dates! On the other hand, using
add(days => 5000) to add 5,000 days
returns a result of 2003-09-10T00:00:00.
DateTime strictly separates the handling
of time units such as days and seconds
and will not normally convert a time
value such as “5000 days” to seconds.

But if you want to convert days to sec-
onds, and will excuse the following pot-
holed abstraction, you can use the
$to->subtract_datetime_absolute($from)
method to subtract the DateTime object
$from from a DateTime object $to to ob-
tain a DateTime::Duration object, and
this object’s seconds() method really
does give the exact number of seconds
that elapsed during the period.

Superman
The dateline is another curiosity. If you
fly east, the local time in the timezones
you fly through gets later and later. At
some point, the date has to shift to the
previous day. If this were not so, you
would be able to travel to the future in a
fast plane. The dateline ([4]) crosses the
Pacific from north to south, slightly to
the east of the island groups off the
South East Asia shore.

Listing 6 (daytrip) shows what hap-
pens if you take a fast plane from Japan

(west of the date line) to
Hawaii (east of the date-
line). These are your
flight details:

Departure: Sunday, U
January 29 2006, 07:30
Arrival: Saturday, U
January 28 2006, 19:00

In other words, you leave on Sunday
morning and arrive a day earlier, al-
though the flight takes six-and-a-half
hours. Saturday evening before the lot-
tery results are announced – pity this
only works for local time.

Speaking in Tongues
Listing 6 (daytrip) also shows how Date-
Time handles different date formats. It
uses formating tools from the DateTime::
Format::* class hierarchy both to parse a
date string with parse_datetime(), and to
output the results. DateTime::Format::
Strptime is a particularly flexible format-
ing tool that has placeholders for the for-
mat string, following a similar approach
to the strptime() function in C. %A repre-
sents the weekday, %B the month name
in writing, %d the date, %H the hour,
and so on. The locale parameter is set to
"en_GB" for Great Britain. en selects the
English language. Part two of the locale
specifies the country and its special rules.

01 #!/usr/bin/perl -w

02 use strict;

03 use Sysadm::Install qw(:all);

04

 05 use DateTime;

06

 07 my $dt = DateTime->new(

08 year => 1990,

09 time_zone => 'UTC'

10);

11

 12 $dt->add(

13 seconds => 3600 * 24 *

14 5000);

15 print "$dt\n";

Listing 5: leapreveal

01 #!/usr/bin/perl -w

02 use strict;

03 use DateTime;

04 use

05 DateTime::Format::Strptime;

06

 07 my $format =

08 DateTime::Format::Strptime

09 ->new(

10 pattern =>

11 "%A, %B %d %Y, %H:%M",

12 locale => "en_UK",

13 time_zone => 'Asia/Tokyo',

14);

15

 16 my $dt =

17 $format->parse_datetime(

18 "Sunday, January 29 2006,

07:30"

19);

20

 21 $dt->set_formatter($format);

22

 23 print "Departure: $dt\n";

24

 25 $dt->add(

26 DateTime::Duration->new(

27 hours => 6,

28 minutes => 30

29)

30);

31

 32 $dt->set_time_zone(

33 'Pacific/Honolulu');

34 print "Arrival: $dt\n";

Listing 6: daytrip

Figure 3: Different languages and customs applied to con-

verting and formatting a date string.

PROGRAMMINGPerl: DateTime Module

73ISSUE 64 MARCH 2006W W W. L I N U X- M A G A Z I N E . C O M

In Listing 7 (locales) are more exam-
ples: en_AU and en_US are locales for
Australian and US English. fr_FR selects
French; es_ES, and es_MX give you
Spanish for Spain and Mexico. After ini-
tializing the formatter with an appropri-
ate locale value, it is passed to the Date-
Time object using set_formatter. “Strin-
gified” DateTime objects are converted
to strings. Figure 3 shows a few exam-
ples.

Leap Years
Looking back to the year 2000, it is prob-
ably safe to assume that most program-

mers are aware of the rule that a leap
year occurs every four years, but not if
the year is divisible by 100, the excep-
tion being years that are divisible by
400.

Of course, DateTime understands
these rules, so just to prove a point, let’s
tackle a more complex problem: How
long is the list of Friday the 29ths of Feb-
ruary between 1980 and 2000?

Two sets of DateTime objects give us
an elegant approach to solving this
problem of finding the Friday leap days:
we need to store all the Fridays in one of
them, and all the 29ths of February in

the other. A DateTime::Set class object
can theoretically contain an infinite
number of DateTime objects.

The easiest way to create a set for this
purpose is to use the CPAN DateTime::
Event::Recurrence module. The Date-
Time::Event::Recurrence-> yearly(days
=> 29, months => 2); constructor
gives us a DateTime::Set type object
with all the 29ths of February as an ab-
stract description.

At the same time, Listing 8 (frifeb29)
uses weekly(days => 5) to define a sec-
ond set that contains all Fridays (that is,
all the 5th days in the week). We can
then use the intersection() method to
give us a set of Friday the 29ths.

To tell the iterator (defined in line 20)
for the resulting set where to start, the
start parameter defines the starting date,
and a DateTime object set to the year
2020 is used to set the end date.

The while loop in line 29 uses next()
for kicking off the iterator and pushing it
towards the end of the period of time
under review. The result of this investi-
gation is: there was a Friday, February
29th in 1980, and there will be another
one in 2008. ■

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 64/ Perl

[2] “What time is it in Indiana?”,
http:// www. mccsc. edu/ time. html

[3] Leap seconds:
http:// en. wikipedia. org/ wiki/ Leap_
second

[4] The date line: http:// en. wikipedia. org/
wiki/ International_Date_Line

[5] Datetime project homepage:
http:// datetime. perl. org

[6] Unix Time:
http:// en. wikipedia. org/ wiki/ Unix_time

[7] UTC, TAI, and UNIX time:
http:// cr. yp. to/ proto/ utctai. html

INFO

01 #!/usr/bin/perl -w

02 use strict;

03 use DateTime;

04 use

05 DateTime::Format::Strptime;

06

 07 my $dt = DateTime->now();

08

 09 for my $locale (

10 qw(en_AU en_US de_DE fr_FR

11 es_ES es_MX)

12)

13 {

14

 15 $dt->set_locale($locale);

16

 17 my $format =

18 DateTime::Format::Strptime

19 ->new(

20 pattern => $dt->locale()

21 ->long_datetime_format()

22);

23

 24 $dt->set_formatter($format);

25 print "$locale: $dt\n";

26 }

Listing 7: locales

01 #!/usr/bin/perl -w

02 use strict;

03 use DateTime;

04 use

05 DateTime::Event::Recurrence;

06

 07 my $feb29 =

08 DateTime::Event::Recurrence

09 ->yearly(

10 days => 29,

11 months => 2

12);

13 my $fri =

14 DateTime::Event::Recurrence

15 ->weekly(days => 5);

16

 17 my $set =

18 $fri->intersection($feb29);

19

 20 my $it = $set->iterator(

21 start => DateTime->new(

22 year => 1980

23),

24 end => DateTime->new(

25 year => 2020

26),

27);

28

 29 while (my $dt = $it->next())

30 {

31 $dt->set_locale("en_GB");

32 print $dt->day_name(), ", ",

33 $dt->month_name(), " ",

34 $dt->day(), " ",

35 $dt->year(), "\n";

36 }

Listing 8: frifeb29

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Perl: DateTime ModulePROGRAMMING

74 ISSUE 64 MARCH 2006 W W W. L I N U X- M A G A Z I N E . C O M

