
Mac fans were ecstatic when
Apple introduced the Quartz
Extreme [1] graphics interface,

which accelerated desktop effects using
3D hardware. Microsoft’s Windows Vista
with its Aero technology looks to close
this gap with the Mac. In the world of
Linux, Xgl [2] now provides a compara-
ble and even more advanced technology
that supports similar effects.

Xgl is an X Server by David Revemann
that uses OpenGL to implement graphics
output. When a program tells Xgl to
draw a line, Xgl passes the vertices to
the OpenGL subsystem, which then
sends the matching commands to the
graphics hardware. Despite this empha-
sis on OpenGL, Xgl also retains the pro-
tocol that existing applications use to
talk to the X Server, removing the need
to rewrite application programs.

Background
Following an extended period of stand-
still in X server development, program-
mers have integrated new features in re-
cent years to provide a basis for the new
Xgl technology. Modern toolkits such as
Qt and GTK already use many of these
new features without users actually real-
izing it. Two major protocol extensions,
Render and Composite, play an impor-
tant role for Xgl and the composite man-
ager Compiz.

The Render extension adds new basic
primitives for displaying images and
polygons, along with a new glyph sys-
tem for enhanced font displays. This
particularly reflects the fact that the leg-
acy graphics commands, called core re-
quests, no longer meet the demands
placed on modern toolkits such as Qt
and GTK. All primitives can now be
linked to data in the framebuffer using
Porter-Duff operators [3], thus support-
ing the rendering of semitransparent sur-
faces (alpha blending) and fonts with
anti-aliasing (pixel coverage). Many
modern applications make extensive use
of antialiased fonts in particular.

Up to now, the window system used in
X has supported overlapping windows,
but it has not provided the ability to
draw to invisible window areas and dis-
play this window content. To achieve
this, all windows first have to be drawn
in an invisible area of the framebuffer,
before all windows are joined (compos-
ited) in the visible frame buffer. This is
exactly what the X server’s Composite
extension does.

An external process handles the task
of combining all the windows to provide
an overall view in a similar way to the
well-known window manager. It can use
the Render extension to draw multiple
superimposed, semi-transparent win-
dows. As compositing and window man-

A member of Suse’s X11 team delivers an insider’s look at Xgl.

BY MATTHIAS HOPF

An OpenGL-accelerated desktop with Xgl and Compiz

BEYOND EYE CANDY

agement must work hand in hand, we
can expect to see more compositing
window managers in the future with the
ability to merge both processes.

Another important X server compo-
nent that desperately needs reworking is
the hardware acceleration architecture,
which is responsible for efficient hard-
ware representation of graphic com-
mands. The previous XAA architecture is
built around core requests, and is there-
fore difficult to extend. The architecture
outlived its usefulness and needs replac-
ing. The most promising alternatives are
EXA and OpenGL.

EXA is straightforward and easy to im-
plement, but OpenGL has the advantage
of being a widespread programming in-
terface supported by working drivers.
There is no need for the X server to con-
trol the hardware. In the future, there
will only be one graphics hardware in-
terface, rather that two separate inter-
faces for XAA/ EXA and OpenGL.

Looking Deeper
In constrast to popular claims, Xgl does
not accelerate the execution of OpenGL
programs. On the contrary, only indirect
rendering is possible for technical rea-
sons at this time of writing. In other
words, OpenGL commands are handed
to Xgl via the GLX protocol before being
passed on to the graphics hardware. In-
direct rendering is much slower than di-
rect rendering for programs that need to
generate large numbers of polygons
(games) or textures (video).

w
w

w
.sxc.h

u

Xgl and CompizCOVER STORY

24 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

At the current time, Xgl cannot na-
tively access the hardware; instead it
relies on a system that initializes the
framebuffer and provides an OpenGL
interface. Right now, that is the popular
Xorg X Server; in other words, Xgl opens
a window that covers the whole screen
on the Xorg server. After this has hap-
pened, X applications can connect to
Xgl, while the standard X server only has
to deal with the Xgl client throughout
the whole session.

The X11 commands the server has to
handle can be fairly complex; this is why
an abstraction layer is used to encapsu-
late the OpenGL statements. The layer,
in the form of the Glitz library, is basi-
cally the OpenGL-accelerated back-end
for the Cairo library, a system for graph-
ics operations that works independently
of the resolution.

When a composite manager enters the
array, more complexity is added to the
graphics pipeline. As Figure 1 shows, the
X Server first redirects all window output
to non-visible areas of the framebuffer. A
memory area of this kind is created by a
pBuffer or Frame Buffer Object (FBO).
All X11 commands issued by an applica-
tion are redirected to this memory space

and rendered by OpenGL. This process
occurs separately for each program.
Then the composite manager draws the
window content as textures on OpenGL
objects. The objects are typically rectan-
gles, but they can be more complex,
three dimensional objects for transitions.

Therefore, Xgl is not responsible itself
for the breathtaking effects we have
heard so much of, however, it does allow
programmers to create a composite man-

ager that can use OpenGL commands to
display windows. This option is not
open to the normal X Server, as OpenGL
is not linked to the underlying window
system; that is, it cannot access window
content drawn using X11 commands.

As Xgl uses OpenGL internally, it can
make window content accessible to an
external composite manager using the
GLX_EXT_texture_from_pixmap exten-
sion. This extension is not provided by
the OpenGL driver, but by Xgl. X.org has
included this extension since the imple-
mentation of AIGLX, but it is still miss-
ing support for a number of features.

As previously mentioned, the compos-
ite manager uses indirect rendering to
draw the desktop; that is, all OpenGL
commands are sent to Xgl using the GLX
protocol before being passed to the
graphics hardware. This is the only way
for another process to use textures in the
Xgl address scope. This issue also affects
all OpenGL applications, as they have to
draw in an invisible area of the frame-
buffer, which has to be in the X server
address scope as well. Refer to [4].

Compiz
Humans are accustomed to understand-
ing three-dimensional scenarios. It thus
makes sense to project the GUI onto a
three dimensional desktop, assuming the
interactions with non-two-dimensional
program representations are kept to a
minimum. Genuine 3D interaction still

Figure 1: Pixel pipeline of a composite managers under Xgl.

X11 Protocol GLX Protocol

Application(s)

DDX

pBuffer / FBO

pBuffer / FBO

pBuffer / FBO

gfx Hardware

Framebuffer

Xserver

Mesa / GLX

OpenGL

Glitz

Composite Manager

3D Desktop Geometry

Commands from Commands from XGL

EXT_texture_from_pixmap

Pixmap Buffer ID

Texture Binding

Composite Manager

Figure 2: Compiz toggling to another virtual desktop.

COVER STORYXgl and Compiz

25ISSUE 68 JULY 2006W W W. L I N U X- M A G A Z I N E . C O M

poses a number of technical issues and
is typically unintuitive.

Projecting two-dimensional pixel data
onto three-dimensional objects is a stan-
dard application for OpenGL. At the
same time, you get effects such as semi-
transparency more or less for free, as
they are part of OpenGL’s standard bag
of tricks. So far, the only reason not to
release a composite manager of this kind
has been that Xgl was needed to open up
the OpenGL interface to composite man-
agers.

Compiz is a composite manager spe-
cifically designed for the Xgl environ-
ment. In a Compiz session, you might
not notice that OpenGL is used for
output. Shadows and slight semi-trans-
parent window decorations are the on-
ly hints you get. But when you toggle
to another virtual desktop, the three-
dimensional nature of the desktop be-
comes very obvious (Figure 2).

Compiz uses a highly-flexible, but
not completely stable, plugin architec-
ture for all its effects. An external pro-
gram renders the window decorations
and hands them over to Compiz. This
makes it easy to integrate themes or dif-
ferent sets of widgets. At present, there
is a window dressing program for
Gnome that also works on KDE.

Compiz plugins are available for basic
window manager functionality, (decora-
tion, move, place, resize), for extended
functions, (cube, scale, switcher), and
for effects (fade, minimize, rotate, wob-
bly, zoom). As plugins with comparable
functions are exchangable, users can

easily modify Compiz to suit their own
taste. Check out [6] for a more detailed
list of plugins, along with function de-
scriptions and instructions on how to
use them.

OpenGL-based programs are often crit-
icized for being eye candy and nothing
more. However, this technology really
does support useful developments in the
field of accessibility aids for users with
sensory impairments (using a zoom plu-
gin, for example), and it supports the de-
velopment of selection aids such as Ex-
posé (scale plugin), which have proved
very useful in the Mac world. Thumb-
nails for applications when users are se-
lecting a productivity tool (Figure 3) are
also very useful, especially if they are ca-
pable of showing the current live output
from the program.

Although Compiz is at the start of its
development lifecycle, it is already quite
usable. Features common to today’s win-
dow mangers may be missing, and some
exception handlers for special program
types are not fully implemented, such as
miniature windows for panels. Some
work remains before complete KDE inte-
gration is achieved.

The Future of X
Is Xgl the future of the X Window Sys-
tem? Opinions were divided at the last
X.org Developers Conference [7] in
Santa Clara. Whereas some bemoaned
the state of open source drivers, and the
incompatibility of proprietary drivers
and GPL, others consider OpenGL to be
a suitable graphics interface and would

like to see the complete driver code
ousted from the X server. An X server
working on the basis of OpenGL could
more easily support a future protocol
that dropped core graphics primitive
support to improve client-server commu-
nications.

One of Xgl’s major weaknesses is its
lack of native hardware support. For the
time being, it is forced to rely on the
Xorg server as an intermediary. An ex-
perimental branch dubbed Xegl is capa-
ble of talking directly to the graphics
hardware, although it is restricted to
R100 and R200 based Radeon cards, and
the current server status is unknown.

Everyone involved seems to agree that
the future belongs to OpenGL-based
compositing window managers. And
Compiz in particular could be the win-
dow manager of the future thanks to its
flexible plugin architecture.

As of this writing, Xgl and Compiz are
both fairly stable, but they are at an
early stage of their development. Pack-
ages are available for openSuse [5] to
give users an opportunity to test the new
technology without going to much trou-
ble. The current snaphots of the immi-
nent Ubuntu release, Dapper Drake,
allow users to install Xgl and Compiz.
The system is so stable with some driv-
ers that it is suitable for production use.
However, as Xgl does not pass on all
OpenGL extensions to its clients, many
OpenGL applications and games still
trigger runtime errors. ■

[1] Apple’s Quartz Extreme:
http:// www. apple. com/ macosx/
features/ quartzextreme

[2] Xgl Wiki at freedesktop.org:
http:// www. freedesktop. org/ wiki/
Software/ Xgl

[3] T. Porter & T. Duff, Compositing
Digital Images, Computer Graphics
Volume 18, Number 3, July 1984,
p. 253-259

[4] Matthieu Herrb and Matthias Hopf,
New Evolutions in the X Window
System, OpenBSDCon ‘05:
http:// www. openbsd. org/ papers/
eurobsd2005/ herrb-hopf. pdf

[5] Xgl Wiki:
http:// www. opensuse. org/ Xgl

[6] Compiz Wiki:
http:// www. opensuse. org/ compiz

[7] X.org Developer’s Conference:
http:// wiki. x. org/ wiki/ XDevConf

INFO

Figure 3: The Switcher plugin with live thumbnails of applications.

Xgl and CompizCOVER STORY

26 ISSUE 68 JULY 2006 W W W. L I N U X- M A G A Z I N E . C O M

