
22

On Debian Sage, Suse Enterprise
Linux 9, Red Hat Advanced
Server 4, and older systems, the

hotplug daemon is the central contact
point for all device events. However, the
daemon does little more than load driv-
ers for new devices – even the simple
task of responding when a network
cable is plugged or unplugged is too
much for the implementation used by
these distributions.

It is hard to understand why the built-
in hotplug configuration is so limited;
after all, kernel hotplugging is easily ca-
pable of performing a fully automated
backup on a USB stick plugged in by a

user, or updating the MP3 collection on
a cellphone in the vicinity, using a few
simple scripts. This article describes
some tricks and scripts you can use to
extend the hotplug system.

Cable Control
netplugd [1] handles link detection for
network connections. The developer,
Bryan O’Sullivan, designed the daemon
to be called by init. After launching, a
netplugd process monitors each connec-
tor. A bash script called /etc/netplug.d/
netplug defines how netplugd should re-
spond to a link state change for a con-
nection.

But hotplug itself, or rather the /etc/
hotplug/net.agent script, is actually re-
sponsible for configuring the network
device. In the case of Ethernet devices,
the script launches ifup, which either as-
signs a static IP address or uses DHCP to
request an address. Additionally, the init
script, /etc/init.d/networking, calls ifup
when the system launches, and sets up
all the network devices listed in /etc/
network/interfaces.

This approach does not make much
sense and causes considerable delays. If
a user boots a laptop without a network
connection, for example, the DHCP cli-
ent waits for a response that it can’t pos-

Debian hotplug is designed for little more than loading drivers and configuring devices. The collection of scripts dis-

cussed in this article helps Linux to respond when a network cable is plugged in or when a cellphone is in the vicinity.

Read on for more on how to define custom hotplug events. BY MIRKO DÖLLE

L
id

iy
a
 D

ra
b
ch

u
k, Foto

lia

JUMP START
Extending hotplug on Debian, SLES 9, and RHAS 4

JUMP START

Debian HotplugCOVER STORY

22 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

23

sibly receive. Additionally, an adminis-
trator will not typically want to distrib-
ute the configuration over too many lo-
cations. But the hotplug daemon helps
to solve both of these problems.

Hotplug Class
First of all, you need to tone down the
call to ifup in the init script. As every
network driver will trigger a hotplug
event as soon as it is loaded and the
hardware has initialized, we only want
ifup -a in the init script to configure the
loopback devices – these are the only
network devices not to trigger a hotplug
event. To allow this to happen, Listing 1
modifes the /etc/network/interfaces file
to assign Ethernet devices to the hotplug
class, to prevent automatic configura-
tion. The listing shows the entries for a
machine with two NICs, one of which
uses DHCP, and the other of which has a
static address assignment.

The allow-hotplug keyword, instead of
the standard auto, tells ifup -a to ignore
these network devices. When the hot-
plug daemon is called, the network driv-
ers pass in the ACTION and INTERFACE

environmental variables. ACTION has a
value of either register or unregister, de-
pending on whether the driver is adding
or removing the network device,
whereas INTERFACE contains the value
of the network device in question, such
as eth0 or eth1.

If you have a static network configura-
tion, like the configuration for eth1 in
Listing 1, it is debatable whether hotplug
should even configure the device when
it becomes available, or whether the
device should wait until a network cable
is attached. For servers, it can be quite
useful to assign an IP address and rout-
ing information to an interface, if the
server provides services such as Bind
and CUPS, in order to bind these ser-
vices to a static IP address when booting
the system.

New Network Agent
It makes more sense for the system to
wait for a network connection before at-
tempting to configure network adapters
that request addresses from external en-
tities. Listing 2 shows an excerpt from a
modified network agent; the agent han-

dles dynamically configured hotplug net-
work interfaces.

In Lines 6 through 10, the agent deter-
mines whether to configure the INTER-
FACE automatically, or whether this is a
hotplug interface. This is done for rea-
sons of compatibility, and it gives ad-
ministrators the ability to set up Ethernet
devices independently of hotplug.

Lines 11 through 13 determine
whether the device has a static configu-
ration; note the static keyword in the
corresponding line in /etc/network/
interfaces – in this case, we want hot-
plug to configure the interface without
inspecting the link status.

We want netplugd to monitor the sta-
tus of network interfaces that have dy-
namic address assignments. Lines 14
through 22 handle this; they also ensure
that the program is loaded. Line 17 is a
special case: it assigns an IP address of
0.0.0.0 to the interface and enables the
interface – this is done to remove any
prior address assignments, and to ensure
that netplugd will detect any changes to
the link status.

Although the link LED might still be lit
on an inactive network interface (Figure
2), the driver will note that the interface
is inactive, and it will not report the link
status or detect the transmission speed.
The command in Line 17 allows the sta-
tus to be passed in, without the interface
having a valid IP address.

Double Gateway
Lines 23 through 29 set up the hotplug
interfaces with static IP addresses, as
specified in /etc/network/interfaces,

Figure 1: When bus drivers register a new device on the system, the kernel uses its hotplug

function to launch the hotplug daemon. Hotplug then relies on the agent responsible for the

bus system.

/sbin/hotplug

Daemon

ieee1394

input

net

pci

scsi

usb

Agents

ieee1394

input

net

pci

scsi

usb

/sbin/hotplug

Hotplug function

Kernel HotplugBus drivers

Assuming a kernel with CONFIG_HOT-
PLUG built in, the /proc/sys/kernel/hot-
plug pseudo file specifies which daemon
the kernel should call when a specific
bus driver registers a new device with
the system (Figure 1). This does not nec-
essarily mean that the device has just
been physically attached to the system;
instead, hotplug is just told that a new
device has become available.

For example, the tg3 network card driver
can trigger a hotplug event when it is
loaded, assuming it finds the matching
Broadcom hardware. Thus, hotplug is
not only responsible for hotplug events,
but also for cold pluggin, that is, loading
or unloading of the corresponding driv-

ers, although no physical change to the
computer has occurred.

Even if a device has hotplugging capabil-
ities, kernel hotplugging does not rely on
these capabilities. The best example of
this is a network card: according to the
specifications, it is entirely possible to
insert or remove a network cable on the
fly, or to connect the computer to a com-
pletely different network. Although most
drivers are capable of detecting a link to
a switch or some other network device,
they do not pass this information on to
hotplug. The reason for this is that NIC
drivers are not bus system drivers, and
only the bus drivers register hotplug
events.

Bus Drivers

01 auto lo

02 iface lo inet loopback

03

04 allow-hotplug eth0

05 iface eth0 inet dhcp

06

07 allow-hotplug eth1

08 iface eth1 inet static

09 address 192.168.178.110

10 netmask 255.255.255.0

11 network 192.168.178.0

12 broadcast 192.168.178.255

13 gateway 192.168.178.1

Listing 1: Interface Classes

COVER STORYDebian Hotplug

23ISSUE 71 OCTOBER 2006W W W. L I N U X- M A G A Z I N E . C O M

however, this approach can become an
issue if the static configuration specifies
a standard gateway (as in Listing 1),
whereas another network device takes
its network configuration from the DHCP
server.

In this example, the standard gateway
is reachable via eth1 even if there is no
network cable attached to the interface.
If a DHCP server uses the network cable
attached to eth0 to assign both the IP ad-
dress and a new default gateway, this
will appear in the routing table, leading

to a situation with two default gateways,
and thus to massive routing problems.

If you have a laptop or some other
portable, it doesn’t make sense to config-
ure the network interface unless a cable
is attached, even if you have static ad-
dress assignments. The changes neces-
sary for handling this conditional con-
figuration are quite minimal; just drop
the code block between Lines 23 and 29,
remove the test condition in Lines 11
through 13, and change Line 14 to the
following:

elif ["${hotplugif}" U
= "true"]; then

Lines 30 through 41 in Listing 2 are vir-
tually unchanged in comparison to the
network agent for Debian Sarge; they
handle network devices with automated
configuration. There is just one major
difference to the code block in Lines 23
through 29.

The test to check whether ifup is run-
ning not only needs to investigate the
current interface, as in Line 24, but has
to take ifup -a and ifup --all into consid-
eration – Line 35 takes care of this, after
Lines 31 through 34 have set up a grep
search pattern.

Modifying Netplug
The Netplug daemon is actually de-
signed to work independently of hot-
plug. For each link event, the daemon
calls the /etc/netplug.d/netplug script
and passes in the interface in question,
along with the event, either in out.

Listing 3 shows the new Netplug
script, which now passes link events
in to hotplug using net_link as the bus
name. The advantage of the approach
used in this script is that it gives ad-
ministrators the ability to configure
responses to hotplug events centrally
in hotplug.

It makes no difference to hotplug
whether the kernel or Netplug triggers
the events. As long as Netplug is running
as root, Hotplug can always load any
missing drivers, create devices, and con-
figure network devices. As /sbin/hotplug
will only search for an agent in the /etc/
hotplug directory named after the cur-
rent bus, it is no problem to add more
pseudo bus systems (Figure 3).

Listing 4 shows how the new /etc/
hotplug/net_link.agent net link agent
works. When the network cable is
plugged, the agent checks (Line 6) to
make sure that the device really is a hot-
plug device. Line 8 ensures that no other
ifup process is attempting to configure
the network interface. Line 11 then sets
up the network interface using the net.
ifup on Debian Sarge.

When the network cable is unplugged,
the code block in Lines 16 through 26 is
run. First, in Lines 19 through 21, the net
link agent has to terminate the netplugd
process that monitors the interface, and
that also triggered the event. The agent

Linux servers, storage
and workstations

www.dnuk.com sales@dnuk.com 0161 343 5333

DNUK is one of the UK’s leading
suppliers of workstations, servers and
storage systems designed and
optimised for the GNU/Linux based
operating systems. From scientific to e-
commerce applications, our products
can be used as building blocks to
create complete solutions. We’ve been
building Linux computers since
September 1998.

64-bit workstations
from £340 + VAT

Rackmount servers
from £582 + VAT

Storage from just 83
pence per gigabyte

01 #!/bin/sh

02 (...)

03 case $ACTION in

04 add|register)

05 (...)

06 if grep -q "^auto[[:
space:]].*${INTERFACE}" /etc/
network/interfaces; then

07 autoif=true

08 elif grep -q
"^allow-hotplug[[:
space:]].*${INTERFACE}" /etc/
network/interfaces; then

09 hotplugif=true

10 fi

11 if grep -q "^iface[[:
space:]]*${INTERFACE}[[:
space:]]*inet[[:
space:]]*static" /etc/network/
interfaces; then

12 staticif=true

13 fi

14 if ["${hotplugif}" = "true"
-a "${staticif}" != "true"];
then

15 if [-x /sbin/netplugd];
then

16 debug_mesg "iface
$INTERFACE will be configured
when link is active"

17 ifconfig ${INTERFACE}
0.0.0.0 up

18 start-stop-daemon --start
--background --pidfile /var/
run/netplugd.${INTERFACE} \

19 --exec /sbin/netplugd --
-i ${INTERFACE} -p /var/run/
netplugd.${INTERFACE}

20 else

21 mesg "E: /sbin/netplugd
not found. You need to install
netplugd."

22 fi

23 exit 0

24 elif ["${hotplugif}" = "true"
-a "${staticif}" = "true"];
then

25 if ps -C ifup ho args | grep
-q "$INTERFACE"; then

26 debug_mesg "Already
ifup-ing that interface"

27 else

28 start-stop-daemon --start
--background --pidfile /var/
run/hotplug.net.ifup.bogus \

29 --startas /etc/hotplug/
net.ifup -- "$INTERFACE"

30 fi

31 exit 0

32 elif ["${NET_AGENT_POLICY}" =
"auto" -a "${autoif}" = "true"
]; then

33 IFUPARG="$INTERFACE"

34 if ["$autoif" = "true"];
then

35 IFUPARG='\
('$INTERFACE'\|-a\|--all\)'

36 fi

37 if ps -C ifup ho args | grep
-q "$IFUPARG"; then

38 debug_mesg "Already
ifup-ing that interface"

39 else

40 start-stop-daemon --start
--background --pidfile /var/
run/hotplug.net.ifup.bogus \

41 --startas /etc/hotplug/
net.ifup --
"$INTERFACE$LIFACE"

42 fi

43 exit 0

44 fi

45 (...)

Listing 2: Network Agent

Debian HotplugCOVER STORY

24 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

then shuts down the network interface
in Line 22 by calling ifdown.

Address Problems
As mentioned previously, a disabled net-
work interface will not report any link
events, and this makes it impossible for
netplugd to react when a network cable
is plugged. On the other hand, the Ether-
net device will keep its old IP address
until a new address is assigned. This

makes it impossible to re-enable the in-
terface simply by calling ifconfig eth0 up,
as this would create a new entry for the
device in the routing table.

To work around this problem, the net
link agent configures the interface in
Line 23 of Listing 4, assigning an IP ad-
dress of 0.0.0.0 and enabling the inter-
face. Of course, as 0.0.0.0 is an invalid IP
address, this configuration has no effect
on routing.

netplugd responds to the 0.0.0.0 ad-
dress assignment by issuing the error
message unexpected state DONWAND-
OUT for UP and terminating. To counter-
act this, the net link agent shuts down
the service in Lines 19 through 21. To
continue monitoring the network inter-
face, and to reconfigure the interface as
soon as a link is available, the netplugd

Linux servers, storage
and workstations

www.dnuk.com sales@dnuk.com 0161 343 5333

DNUK is one of the UK’s leading
suppliers of workstations, servers and
storage systems designed and
optimised for the GNU/Linux based
operating systems. From scientific to e-
commerce applications, our products
can be used as building blocks to
create complete solutions. We’ve been
building Linux computers since
September 1998.

64-bit workstations
from £340 + VAT

Rackmount servers
from £582 + VAT

Storage from just 83
pence per gigabyte

Figure 2: If the network device has been disabled via ifconfig or ifdown, the link LED may be

lit when a cable is attached, however, the driver will not attempt to detect the network speed,

or report that a cable has been plugged in.

01 #!/bin/bash

02 export INTERFACE="$1"

03 case "$2" in

04 in)

05 export ACTION="register"

06 /sbin/hotplug net_link

07 ;;

08 out)

09 export ACTION="unregister"

10 /sbin/hotplug net_link

11 ;;

12 esac

Listing 3: Netplug Script

COVER STORYDebian Hotplug

advertisement

net link agent is then relaunched in
Line 24.

In principle, netplugd supports wild-
cards such as eth* when specifying the
network interface. But as Netplug dies
when the interface is disabled, it is im-
portant to run a Netplug daemon for
each interface. Thus, you need a com-
pletely empty /etc/netplug/netplugd.conf
to pass the interface to be monitored to
netplugd at the command line.

Bluetooth Events
Daemons such as netplugd that create
events based on logical state changes are
useful for many other tasks. For example
you could use a daemon to detect a
Bluetooth cellphone in its vicinity.

Listing 5 shows the bluenear daemon.
It uses hcitool to attempt to set up a con-
nection to a cellphone every five min-
utes. Once a link is established, it checks
the link quality, which can be between 0
and 255. If the quality drops below 128,
it assumes that the phone, and thus the
user, are no longer near the computer,
and this in turn trigers a hotplug event.
A user agent can pick up the event and
perform some action, such as locking
the screen, for example.

Lines 6 and 7 check if the Bluetooth
device is within range, using a direct
connection attempt, hotplug cc, followed
by a call to the connection overview,
hotplug con. The Bluetooth ID must be
known and entered in Line 2 for this to
happen. Although hcitool scan would list
any Bluetooth devices in the vicinity, the
scan parameter restricts the list to visible
Bluetooth devices only.

A direct Bluetooth connection adds
the advantage of being able to determine

the signal strength – hcitool in Line 8. If
this drops below the preset value, we
can assume that the distance between
the Bluetooth device and the computer
is too great, and this results in the user
being classified as away in Lines 13
through 15. The same thing happens in
Lines 26 through 28 if it is impossible to
establish a connection. As soon as the
phone is in the vicinity, Lines 19 through
21 classify the user as present.

Delegating Hotplug
Many USB devices serve a single pur-
pose – when a user attaches a scanner,
you can safely assume they want to scan
something. If they attach a digital cam-
era, they will typically want to transfer
the images stored on the camera to the
PC. This causality makes it possible to
automate certain processes. For example,
if you are interested in automating the
process of transferring data between
your home and work PCs, you can save
yourself all that typing and automate the
transfer.

The issue at stake is one of making
hotplug events accessible to users. To
allow this to happen, we need to extend
the USB hotplug agent, and users need
to write hotplug scripts for the devices
they intend to support. Listing 6 shows
the extension, which needs to be stored
as /etc/hotplug/usb.specialdev by the
root users. To make sure the USB agent
honors the extension, the root user also
needs to add a usb.specialdev line to
the usb.agent in the same directory.
This has to be the last instruction in the
add block right at the end of the file to
ensure that the agent will process the

Figure 3: As long as the additional daemons are running as root, it makes no difference to

hotplug whether the kernel or one of the daemons triggers the event. Additional agents are

required for the new pseudo buses.

/sbin/hotplug

Daemon

ieee1394

input

net

pci

scsi

usb

/sbin/hotplug

Hotplug function

Kernel HotplugBus drivers

Netplug

net_linkBluenear

user

ieee1394

input

net

pci

scsi

usb

Agents

net_link

user

01 #!/bin/sh

02 (...)

03 case $ACTION in

04 add|register)

05 (...)

06 if grep -q
"^allow-hotplug[[:
space:]].*${INTERFACE}" /etc/
network/interfaces; then

07 # this $INTERFACE is marked
as class hotplug

08 if ps -C ifup ho args |
grep -q "$INTERFACE"; then

09 debug_mesg "Already
ifup-ing that interface"

10 else

11 start-stop-daemon
--start --background --pidfile
/var/run/hotplug.net.ifup.
bogus \

12 --startas /etc/hotplug/
net.ifup -- "$INTERFACE"

13 fi

14 exit 0

15 (...)

16 ;;

17 remove|unregister)

18 (...)

19 debug_mesg "Invoking ifdown
$INTERFACE"

20 if [-e /var/run/
netplugd.${INTERFACE}]; then

21 kill `cat /var/run/
netplugd.${INTERFACE}`

22 fi

23 ifdown "${INTERFACE}"

24 ifconfig ${INTERFACE}
0.0.0.0 up

25 start-stop-daemon --start
--background --pidfile /var/
run/netplugd.${INTERFACE} \

26 --exec /sbin/netplugd -- -i
${INTERFACE} -p /var/run/
netplug

27 (...)

28 ;;

29 (...)

30 esac

Listing 4: Net Link Agent

Debian HotplugCOVER STORY

26 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

user-defined hotplug scripts
after loading and initializing
the drivers.

Lines 1 through 3 ensure
that entities registered by hot-
plug really are devices and
not just device features. It is
easy to distinguish between
the two: only genuine USB
devices have vendor and
product IDs. Lines 5 through
7 read this information and
the serial numbers.

The loop starting in Line 9
processes /etc/passwd line by
line, locating the home direc-
tory for each user. If the

script finds a user hotplug
script in the .hotplug direc-
tory below the user’s home
directory, and if the name of
the directory matches the
vendor and product IDs of
the device that was just
plugged in (Line 13), Line
18 checks if the filename
 contains a serial number, and
if this number matches the
device’s serial number.

If the user script is not re-
stricted to a specific serial
number, or if the numbers
match, hotplug will call the
user hotplug script in Line 22

Stay a Step Ahead with
These Apress Titles

“It’s my first
must-read book

of 2006.”
—Richard Bejtlich,

http://taosecurity.blogspot.com

Iljitsch van Beijnum
1-59059-527-0
288 pp. I $44.99

James Turnbull
1-59059-444-4
584 pp. I $44.99

“Hardening Linux
by James Turnbull

belongs on the
shelf of anyone
who installs and
maintains Linux

servers.”
— Ray Lodato,

Slashdot Contributor

For more information about Apress titles,
please visit www.apress.com.

Apress books are available at fine bookstores worldwide.

You
Can’t Afford Network

Downtime

01 #!/bin/bash

02 export INTERFACE="00:01:E3:45:FF:FF"

03 STATE="away"

04

05 while true; do

06 hcitool cc ${INTERFACE} 2>/dev/null

07 if hcitool con|grep -q ${INTERFACE}; then

08 Signal="`hcitool lq ${INTERFACE}`"

09 hcitool dc ${INTERFACE}

10

11 if ["${Signal##*: }" -lt 128]; then

12 if ["$STATE" != "away"]; then

13 STATE="away"

14 export ACTION="unregister"

15 /sbin/hotplug user

16 fi

17 else

18 if ["$STATE" != "near"]; then

19 STATE="near"

20 export ACTION="register"

21 /sbin/hotplug user

22 fi

23 fi

24 else

25 if ["$STATE" != "away"]; then

26 STATE="away"

27 export ACTION="unregister"

28 /sbin/hotplug user

29 fi

30 fi

31 sleep 5m

32 done

Listing 5: bluenear

COVER STORYDebian Hotplug

27ISSUE 71 OCTOBER 2006W W W. L I N U X- M A G A Z I N E . C O M

with the privileges of the current user. It
is important for su to use hotplug’s envi-
ronmental variables, that is, not to pro-
vide a login shell, as the environmental
variables passed in by the kernel would
otherwise be lost. Additionally, the script
has to run in the background to remove
the danger of hotplug blocking.

User Hotplug Scripts
Listing 7 shows a user hotplug script for
a USB stick. Line 4 checks if this really is
a USB storage device, and, if so, deter-
mines the device name. The script relies
on a number of special features in order
to perform its assigned tasks: hotplug
uses the DEVPATH variable to return the
path to the pseudo-files for the new de-
vice, although we do need to add a /sys
prefix here.

If the device is a USB storage device, a
number of subdirectories will reside
below this path. The subdirectories are
named after the port position and host
number.

If the directory at the bottom of the
tree has a relative symbolic link for
block, the device is a block device.
readlink -f converts this relative sym-
bolic link to an absolute path name, for
example, /sys/block/sda. And Line 9
takes the device name from this path
name. Incidentally, there are more en-

tries in /sys/block/sda: sda1, for exam-
ple, which represents the partition on a
USB stick.

Users can add their own commands
starting in Line 10, and hotplug will au-
tomatically run these commands with
the privileges of the current user when-
ever the USB stick is plugged in. The
most obvious options here would be to
mount the partition and then call rsync
or another tool to sync your data. In the
case of a USB scanner, users would typi-
cally want to run xsane; or for a camera,
they might like to transfer the images on
the camera to the PC and sort the image
files by date.

Users need to store scripts in the .hot-
plug subdirectory below their home di-
rectories and to ensure that the scripts
are executable. The file name follows a
pattern of Vendor ID.Product ID:Serial
number, where the vendor and product
IDs contain four digits and use small
hexadecimal letters – for example,
0d7d.1600:075218833456. The colon,
and the serial number can be left out of
the name if the script launches all de-
vices with the vendor and product IDs in
question.

Conclusion
The hotplug system is useful as it is, but
you can do much more with it if you

understand how it works. You can easily
adapt the scripts described in this article
for other purposes. Automatic data
transfer, for instance, works for other de-
vice types as well as USB. A combination
of Listings 6 and 7 with the Bluetooth
device detection routine from Listing 5
would let hotplug autonomously update
the MP3 files on any user’s cellphones
within range. You could also use this
technique to sync calendar or address
book data. There would be no need to
attach these phones to the computer or
launch a sync tool; in fact, the process
would even work without the user log-
ging in. ■

[1] netplugd:
http:// www. red-bean. com/ ~bos/

[2] Scripts: http:// www. linux-magazine.
com/ Magazine/ Downloads/ 71/ hotplug

INFO

01 #!/bin/bash

02 case $1 in

03 add)

04 BlockDev=`readlink -f /
sys${DEVPATH}/*:*/
host*/[0-9]*/block 2>/dev/
null`

05 if [-z "${BlockDev}"];
then

06 exit 1

07 fi

08

09 DevName=${BlockDev##*/}

10 (...)

Listing 7: User Hotplug
Script

01 if [! -e "/sys${DEVPATH}/
idProduct" -o ! -e "/
sys${DEVPATH}/idVendor"];
then

02 exit 0

03 fi

04

05 read VendorID < /
sys${DEVPATH}/idVendor

06 read ProductID < /
sys${DEVPATH}/idProduct

07 read SerialNo < /
sys${DEVPATH}/serial

08

09 for User in `cut -d":" -f1,6</
etc/passwd`; do

10 UserName=${User%:*}

11 UserHome=${User#*:}

12

13 for HpScript in
${UserHome}/.hotplug/

${VendorID}.${ProductID}*; do

14 if [-e "${HpScript}"];
then

15 UserSerial=${HpScript##*
/}

16 UserSerial=${UserSerial/
${VendorID}.${ProductID}}

17 UserSerial=${UserSerial#
:}

18 if [-n "${UserSerial}"
-a "${UserSerial}" !=
"${SerialNo}"]; then

19 break

20 fi

21 if [-x $HpScript]; then

22 su "$UserName" -c
"$HpScript add" &

23 fi

24 fi

25 done

26 done

Listing 6: usb.specialdev

Mirko Dölle is the
head of our Hard-
ware Competence
Center, and as such
he tests more or
less everything he
can get his hands
on – even if the lid is
nailed down. In his leisure time,
Mirko is the developer of the RoResc
miniature rescue distribution, and
the co-author of the LinVDR distri-
bution. On the weekend, he makes
the old alchemists’ dream come
real, turning gold into lead…

T
H

E
 A

U
T

H
O

R

Debian HotplugCOVER STORY

28 ISSUE 71 OCTOBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

