
88

The Vim [1] text editor, and its
predecessor Vi (which is typi-
cally implemented as a link to, or

an alias for, Vim) take some getting used
to. And the unintuitive user interface
prevents many users from trying this
practical tool. But once you get to know
the various operating modes, you will
probably not want to do without the use-
ful services this lean editor provides.

A Question of Status
Most users have some difficulty grasping
the concept of the various operating
modes provided by Vim. After all, Vim
has no less than four of them.

Normal mode is the central mode from
which you can switch to the other
modes. This is the mode that Vim enters
when launched; it is also known as com-
mand mode. Various keyboard shortcuts
give users the ability to delete, copy, and
move text. Entries always follow the

same pattern: start by saying how often
you want to execute the command (this
defaults to exactly once), then type the
command. To return to command mode
from one of the other modes, press the
[Esc] once, or multiple times, until you
hear a beep telling you that you are back
in normal mode.

To enter text, press the [I] (“insert”)
key to enter insert mode. Vim displays
an -- INSERT -- message at the bottom
left corner of the screen. Other methods
for switching to insert mode are to press
[A] (for “append”) to insert text directly
behind the cursor, [Shift]+[I] (which
takes you to the start of the current line
and switches to insert mode), and
[Shift]+[A] (which takes you to the end
of the line and switches to insert mode).
You can also type [O] in normal mode to
open a line below the cursor, or
[Shift]+[O] to insert a line above the
cursor.

You can type a colon in normal mode
to change to command line mode. After
changing to command line mode, you
can type commands at the colon prompt
to search and replace, for example. Type
an exclamation mark after the colon to
run shell commands.

Visual mode lets you select areas char-
acter by character, line by line, or block
by block, to then copy or cut the selec-
tion. Pressing the keyboard shortcut,
[Esc]+[V], takes you to visual mode.
Vim displays a -- VISUAL -- label bottom
left on the screen to tell you which mode
you are in, and any text you select is
highlighted.

First Steps
The editor is launched by entering vim
at the command line; you can optionally

Vim feels at home with any Linux distribution. This text mode only

editor, which completely does without a mouse, is a useful aid for

command line fans. BY HEIKE JURZIK

Working with the VIM text editor

PUT SOME VIM IN IT

U
n

ilev
er

You can press [.] to repeat the last Vi(m)
command.

TIP

Command Line: VimLINUXUSER

88 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

provide the name of the file
you wish to edit:

vim linux-userU
/2006/08/ vim.txt

To quit the editor, change
back to normal mode, and
type :q!, to quit Vim and dis-
card any changes you have
made. Alternatively, you can
type :wq, if you wish to save
your modifications before
quitting Vim. You can save a
step if you type :x, or
[Shift]+[Z] twice, instead.

To save changes without
quitting Vim, type the :w
command. You can also ap-
pend a filename to the com-
mand to save your changes
in a new file:

:w new_file.txt

Various command line pa-
rameters influence the way
the editor launches. If you
wish to open a file read-only,
add the -R option. Vim also
has a practical recovery func-
tion that lets you restore a
session after a crash. To do
this, type vim -r file at the
command line.

You can undo a step by
pressing [U]. To undo multi-
ple steps, press the key multi-
ple times. To discard all the
modifications in the current
line, press [Shift]+[U].

To display an overview of
all command line parameters,
with short explanations, type
vim -help in the shell.

Clean Slate
In contrast to the legacy Vi
editor, the [Del] and [Back-
space] keys both delete text
in Vim’s insert mode. How-
ever, the delete and modify
functions in command mode
are far more practical, and
quicker. Just press [X] to de-
lete the character under the
cursor, add a number to de-
lete a specific number of
characters: for example,

pressing 5x will delete exactly
five characters.

To delete the word under
the cursor, move the cursor to
the first letter of the word you
want to delete, and type dw.
If you wish to replace a word,
type cw instead – Vim will
not only replace the word
under the cursor, but auto-
matically switch to insert
mode so that you can enter
the replacement text.

To delete a sentence, type
the d) combination, and to
delete the text from the cur-
rent cursor position to the
end of the line, type d$.
Again you can type c instead
of d to switch to insert mode
directly after deleting the
text. To delete a whole line,
type dd; and in typical Vim
fashion, if you wish to delete
three lines at one fell swoop,
just add a number, as in 3dd;
3cc will delete three lines,
and – you guessed it – switch
to insert mode.

Combinations with other
commands are also possible.
If you wish to delete from the
current line to the end of the
file, type dG, or type dgg to
delete from the current line to
the start of the file.

Copy Artist
Vim gives you the ability to
insert the text deleted by one
of the previous commands at
a different position in the
document. To do so, press
[P], to insert the clipboard in
front of the cursor; or press
[Shift]+[P] to insert the text
behind the cursor.

Of course there is no need
to delete text to store it in the
clipboard, and then insert it
at another postion – Vim also
gives you a number of copy-
ing functions. To copy a line,
just type yy, and then press
[P] or [Shift]+[P]. Again,
combinations of commands
are supported: you can type a
number to say how many
lines you wish to copy. For

advertisement

example, typing 5yy will copy the cur-
rent line, and the next four lines.

If you need to copy a more precisely
defined selection, there are many ap-
proaches to doing so. Visual mode gives
you a practical approach: press
[Esc]+[V], then select a region of text
with the arrow keys, and press [Y] to
copy the text to the clipboard. You can
then press [P] or [Shift] +[P] to insert at
a different position.

Search and Replace
To find a text string, press /, type the
search key, and press [Enter]. [N] tells
Vim to go on searching in the current di-
rection, and [Shift]+[N] reverses the di-
rection. You can also opt to search back-
wards by typing ?search_key. Vim also
gives you two practical shortcuts: type *
to search forwards for the word under
the cursor, and # to search backwards.

Vim has another practical feature that
helps programmers and LaTeX fans
search for matching brackets. Go to an
opening bracket , such as (, { or [, and
type %. Vim will now automatically go
to the closing bracket: pressing % again
takes you back to the opening bracket.

To search and replace, you need to
switch to command line mode. To re-
place a string of Vi with Vim, you would
type :s/Vi/Vim. Vim will only replace
the next instance of the search key. You
can replace all the search keys in one

line by typing :s/Vi/Vim/g, and all the
search keys in the whole file by entering
:%s/Vi/Vim/g

For Ever and Ever
When launched, Vim looks for a setup
file; by default this is ~/.vimrc in your
own home directory. If you need a good
template to copy and modify to match
your own requirements, check out /etc/
vimrc or /etc/vim/vimrc.

The configuration file for the editor
(~/.vimrc) not only gives you scope for
your own personal preferences, but also
for macros, individual syntax highlight-
ing, and many other things. The box ti-
tled “Your Own .vimrc” gives a couple of
simple, commented examples (in Vim
syntax following the " character).

Help!
Vim comes with comprehensive docu-
mentation, which you can access by
pressing [F1], or typing :help while
working with the editor. Doing so splits
the editor window, with the help text
displayed in the upper half. You can use
the arrow keys, and [Pg Up]/ [Pg Dn] to
scroll the help screen; pressing :q quits
Vim help.

Links between help topics are indi-
cated by two pipe characters (see Figure
1). You can jump to a sub-chapter by
placing the cursor between the two char-
acters, and then pressing the keyboard
shortcut Ctrl-]; pressing [Ctrl]+[O] or
[Ctrl]+[T] takes you back.

To search the help text for keywords,
type :help topic; you can use wildcards,
such as * (for any number of charac-
ters), and ? (for a single character). If
Vim fails to find your search key, the edi-
tor will give you the next best thing. You
can use a trick to display multiple topics,
and then select the one you were looking
for. Type :help, followed by the first few
letters of the topic you are interested in,
such as help syn, and then press
[Ctrl]+[D]. Vim will give you a selection
of help topics starting with the “syn”
string.

The tutorial that comes with the Vim
distribution is another useful source of
information. Entering vimtutor at the
command line launches the tutorial. ■

The next issue of Linux Magazine fea-
tures a more detailed discussion of Vim
macros.

NOTE

01 "Switch syntax highlighting
on:

02 syntax on

03

04 "Show line numbers:

05 set number

06

07 "Go to matching text while
searching:

08 set incsearch

09

10 "Disable automatic indent:

11 set nosmartindent

12

13 "Map F2 to the shell fmt
command:

14 map <F2> !}fmt<CR>

15

16 "Call ispell with parameters
when F3 is pressed:

17 map <F3> :w!<CR>:!ispell -T
latin1 %<CR>:e! %<CR>

Your Own .vimrc

Figure 1: Vim comes with a comprehensive help feature, and command reference. Links to

sub-chapters are indicated by two pipe characters.

[1] Vim homepage: http:// www. vim. org/

INFO

Command Line: VimLINUXUSER

90 ISSUE 72 NOVEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

