
24

Web 2.0 isn’t only about the user experience.
Several important new developer tools are
also helping to create faster and more effi-

cient websites. One of the most important features of
the new Internet is a technology known as AJAX.

On the old Internet, if you filled out a web form with
several input fields and sent it to the server, you were
expected to wait while the server evaluated your input
and responded with a new page (Figure 1). An AJAX-
based website provides a more elegant solution. In-
stead of re-requesting the whole page, the web browser
simply requests a small fragment of the page. The user
continues to work as the request if filled by the server,
and the browser goes on to merge the data with the ex-
isting page. In the user’s experience, the website is al-
most as fast as a desktop application.

The name AJAX was coined by Jesse James Garrett
[1] in his essay “AJAX: A New Approach to Web Appli-
cations.” Although Garrett maintains that AJAX is not
an acronym, most people take as a shortcut for Asyn-
chronous Javascript and XML. AJAX websites are not
built from static HTML files (and CSS stylesheets), but
are, instead, comprised of Javascript code that runs
when a user clicks a link or triggers some other kind of
event. Javascript functions request data from the server,
which returns the XML (this explains the X) and HTML-
formatted data, along with other formats.

This article provides a hands-on look at how to put
AJAX to work for your own website.

Asynchronous
Because the AJAX request is asynchronous (this ex-
plains the A), the user can continue to interact with
other parts of the HTML page without blocking the
browser. An asynchronous request emancipates the re-
quest from the response. Once the browser’s Javascript
code has issued a request, it just goes on running.
When the response reaches the browser, it calls a spe-
cific Javascript function, which in turn merges the re-
sult with the existing HTML page. The result can be as
simple as a single numeric value in an HTML table,
structured data in XML or JSON (Javascript Object No-
tation), or a form value.

This technique gives Google Mail the ability to use
workspace at the center of the browser to display an
editor where the user can compose a message, display
a message, or display a list of messages (Figure 2).

AJAX offers a fast and efficient approach for building

interactive websites. We’ll show you how to call upon

the powers of AJAX for your own web creations.

BY OLIVER FROMMEL

Programming websites with AJAX

FASTER, HIGHER,
FARTHER

AJAXCOVER STORY

24 W W W. L I N U X- M A G A Z I N E . C O M

Other good examples of AJAX are the
Web 2.0 apps Flickr and Del.icio.us.

Quick Start
To get us started, let’s take a look at a
very simple web application. When the
user clicks, we want the browser to
download a random number from the
server and display the number at a pre-
defined position on the web page.

The application comprises three com-
ponents: the static HTML front page, the
Javascript code, and a server-side script
that returns the results (the random
number). One thing you definitely need
for this is a web server (typically
Apache) that supports a scripting lan-
guage – this will be PHP in our example.
However, you can run the server and the
browser on the same machine – any nor-
mal desktop will do – to try AJAX out.

If installing and configuring Apache
and PHP with your distribution’s stan-
dard tools is too complex, just pick one
of the popular LAMP or XAMPP pack-
ages. The packages include Apache and
PHP, along with the MySQL database,
which, strictly speaking, you do not
need, although it can come in handy for
dynamic AJAX applications.

The HTML file in the AJAX sample ap-
plication has a simple structure (Listing
1). The script tag in the header section
points to an external Javascript file, ti-
tled ajax.js, which contains the code for
the AJAX application. As an alternative
to this, you can insert Javascript func-
tions between the opening and closing
script tags in the body of the HTML file.

Line 6 in Listing 1 links the code and
the HTML. The link’s onclick attribute
stores the name of the Javascript func-
tion called by the browser (getRandom)

when the user clicks it. This is followed
by an HTML span with an ID, which the
Javascript will reference later.

If you want to test whether the HTML/
Javascript connection is working, add
the following code to the file:

function getRandom()
{
 alert("Clicked");
}

Assuming that index.html and ajax.js are
located in the same server directory, ajax-
test for example, the URL for the HTML
page would be http://Servername/ajax-
test/. If the server and browser are run-
ning on the same machine, use localhost
as the server name. Now, when you click

the link, the browser pops up a dialog
that displays a text message of Clicked.

If this doesn’t work, at least you can
practice troubleshooting. The Firefox
browser is a good choice for develop-
ment work with AJAX, as it includes a
collection of practical tools. For example,
the Tools menu has a JavaScript Console
item that pops up a small window for
Javascript error messages.

A simple application like this does not
have many potential sources of error.
The server may not be able to locate the
Javascript file, or the problem could be a
syntax error.

Connecting with the Server
Thus far, the browser has sent one re-
quest each for the HTML page and the

Figure 1: The legacy approach: the browser

reloads the page completely whenever a

change occurs.

new

Server

1

2

new

3

4

Figure 2: The AJAX model: requests only

reload the parts of a page that have actually

changed.

Server

1

2

3

4

new

new

Advertisement

COVER STORYAJAX

Javascript file to the server. This com-
pletes the communication. The two do
not contact each other when a user
clicks a link. To retrieve more data from
the server, the Javascript code first has
to create a request object. The XML-
HttpRequest() handles this and also ex-
plains the X in AJAX. The following
command assigns the new request object
to the request variable:

request = U
new XMLHttpRequest();

The request object has a number of
methods that are important for commu-
nicating with the server later on. First of
all, request.open() sets the connection
parameters.

The first parameter specifies the HTTP
method (GET or POST); this is followed
by the web address (URL) to contact.
The next parameter is for asynchronous
access with a value of true) in our case.
Two optional parameters can pass in the
username and password for password-
protected pages. Assuming an address of
http://localhost/~oliver/ajax/test.php in
the Javascript variable url, the following
line sets up the connection:

request.open("GET", url, true);

Before you send the request to the
server, you first have to specify the func-
tion the browser calls when it receives
the response. You may recall that the
browser will not wait for the server re-
sponse, as communications between the
browser and the server are asynchro-
nous. The request object’s onreadystat-

echange field is used to specify the call-
back function.

As the name would suggest, the
browser does not just call the callback
function when it receives a response, but
whenever the request object state has
changed. Five states are defined for the
request object, ranging from unused (0)
to finished (4).

Waiting for Responses
Finally, let’s use the send method to
send the request to the server; the
method can handle any payload data
you may have as optional parameters,
giving you the ability to insert user input
into forms, for example.

Our simple example does not have any
payload data; this is why we are passing
in a null parameter to send.

Listing 2 shows the complete listing
for the simple AJAX application. The
callback function occurs in Line 10,
checkResult(); it outputs the current re-
quest status in a dialog whenever it is
called.

Because the browser doesn’t actually
do anything with the server response,
there is no need to go to the trouble of
writing a PHP script. For demonstration
purposes, you can simply use the index
page to issue the request, as shown in
Listing 2. This solution does not influ-
ence the way the request object or the
callback function are used.

If you don’t see a dialog, it’s back to
troubleshooting: a typo in the URL vari-
able, possibly? Copy the string (without
the quotes), insert it into the address box
in another browser window, and press
the Enter key. If the server responds with
an error message, compare the variable
with the filename on the server once
again.

The security settings for Javascript in
your browser are another potential
source of error: the request object can
only contact the server that served up
the original HTML page. If the server ad-
dresses differ, the browser will assume a
security infringement and issue a “Per-
mission denied” message.

A Firefox extension titled Firebug can
be useful for troubleshooting AJAX ap-
plications [2]. It not only shows you the
Javascript errors but can give you every
single XMLHttpRequest with the header
fields and response code.

Payload
Of course, these simple examples are not
exactly what AJAX’s inventor intended.
Background server requests are designed
to merge dynamic content with the cur-
rent website. The PHP script in Listing 3
implements a test service for this pur-
pose, issuing a random number between
1 and 100 for each request.

If you store the script as random.php
in the same server directory as the other
files, you need to change the url variable
in ajax.js to match. This gives you the
following line:

var url = "http://localhost/U
~oliver/ajax/random.php";

To tell the browser to load the modified
Javascript code, just click the reload but-
ton. Now, when you click the link, the
dialog windows will display the request
object status.

Of course, you have to complete the
transfer to access the server data – this is
request object state 4 – so you might like

01 <html>

02 <head>

03 <script
language="JavaScript"
type="text/javascript"
src="ajax.js"/>

04 </head>

05 <body>

06 <a href="#"
onclick="javascript:
getRandom()">AJAX-Test

07

08 </body>

09 </html>

Listing 1: HTML with AJAX

01 function checkResult()

02 {

03 alert("New state: " +
request.readyState);

04 }

05

06 function getRandom() {

07 request = new
XMLHttpRequest();

08 var url = "http://
localhost/~oliver/ajax/index.
html";

09 request.open("GET", url,
true);

10 request.onreadystatechange
= checkResult;

11 request.send(null);

12 }

Listing 2: The Complete
Listing

01 <?

02 srand(time());

03 $random = (rand()%100);

04 print $random;

05 ?>

Listing 3: Random Number
PHP Script

AJAXCOVER STORY

26 ISSUE 73 DECEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

to have the callback handler check for
the terminal state on every state change,
and not process the payload until the ob-
ject reaches this state.

You can use the request object’s ready-
State variable to read the data. The re-
sponseText stores the payload data in
ASCII clear text. The checkResult() func-
tion now looks like this, as you can see
in Listing 4.

Now, when you reload the page in
your browser and click the link, a dialog
appears with the random number gener-
ated by the server.

Updating the Page
This completes two of the three steps to
creating an AJAX application. We have
used a request object to send a request
to the server, received a response, and
processed the response. That just leaves
updating the web page itself. We want to
display the payload data at the assigned
position, and to format the data in an at-
tractive way, rather than just popping up
a dialog box.

Again, Javascript code will take care
of this. The page make up is represented
browser-side by the Document Object
Model (DOM, see Figure 3). The docu-
ment tree structure gives us the ability
to reference, read, and modify any
HTML element in Javascript. You can
supply code to insert elements into the
tree; the elements are then displayed
on the HTML page. The Firefox Tools |
DOM Inspector function lets you inspect
the document tree (Figure 3).

For the time being, let’s just modify
an existing element to display the results
of the AJAX query. Modifying an ele-
ment is very simple if the element we
want to change has a unique ID, which
you can use to reference it in Javascript.
We assigned an ID of random to the
span element in the HTML file shown in
Listing 1.

The getElement-
ById() Javascript
function for the com-
plete document pro-
vides us with a refer-
ence to the HTML ele-
ment. The command
that follows sets the
HTML elements in-
nerHTML property to
the required random
value.

var randomDiv = U
document.getElementByIdU
("random");
randomDiv.innerHTML = U
request.responseText;

Just add these two lines to checkResult(),
in place of the alert function, to com-
plete the AJAX application: the Javas-
cript code writes the results directly to
the HTML page, instead of reloading the
whole page.

Incompatibility
At least that’s what happens in theory,
but as is so often the case in develop-
ment work, reality is a different matter.
Each browser does its own thing, and
AJAX programmers just have to cope
with these quirks.

Let’s start with Internet Explorer – cur-
rent versions don’t implement the XML
Request object, or at least not in a way
that gives you the required results when
you call XMLHttpRequest(). Microsoft
expects you to implement an ActiveX ob-
ject instead, but luckily it does at least
react in the same way as a request object
apart from this. In fact, another variant
is actually required, as different versions
of Internet Explorer use different syntax.

KDE’s Konqueror and the Apple Safari
browser are two more candidates, as
some Javascript constructs used to ma-
nipulate the DOM tree can cause trouble.
For example, the procedure we just
looked at, for accessing an element you
want to change via the getElementById()
document function, will not work. To
save you work, AJAX examples with var-
ious browser workarounds are available
online from [3].

The checkResult() function in the list-
ing also demonstrates how to make the
interaction more dynamic. As shown in
the last variant, it waits until the request

has been completed (state 4) before set-
ting the span element to the result. For
all other state changes, and they start
when the connection is established, it
changes the text to Loading… to give the
user some feedback on what is going on.

Help on the Web
As you can see, AJAX web applications
take slightly more programming effort
than conventional websites, starting
with the design: not every website is
suitable for “ajaxifying.” Good planning
is even more important than for legacy
web development. Finally, you need a
server-side script for every AJAX section
on a page. And the Javascript code for
every AJAX application needs to know
exactly how the pages are structured.
Cascading Stylesheets (CSS) can provide
an improved structure, however, this
means adding even more files.

The numerous Javascript and AJAX li-
braries on the Internet are useful. Sajax
[4] abstracts AJAX requests and re-
sponse processing, removing worries
about browser incompatibility. Rico [5],
and the Yahoo User Interface Library
(YUI) [6] add more convenience; both
include functions for creating dynamic
HTML interfaces. ■

[1] AJAX: A New Approach to Web
Applications:
http:// adaptivepath. com/ publications/
essays/ archives/ 000385. php

[2] Firebug: http:// www. joehewitt. com/
software/ firebug

[3] Listings for this article:
http:// www. linux-magazine. com/
Downloads/ 2006/ 12/ ajax

[4] Sajax:
http:// www. modernmethod. com/ sajax

[5] Rico: http:// openrico. org

[6] YUI:
http:// sourceforge. net/ projects/ yui

INFO

01 function checkResult()

02 {

03 if (request.readyState == 4)
{

04 alert("Response: " +
request.responseText);

05 }

06 }

Listing 4: The checkResult()
function

Figure 3: Select Tools | DOM Inspector in Firefox to inspect the

Document Object Model of an HTML page.

AJAXCOVER STORY

28 ISSUE 73 DECEMBER 2006 W W W. L I N U X- M A G A Z I N E . C O M

