
60

Server optimization is a question
of survival: a server’s efficiency
drops when the load increases.

And if incoming requests push the load
too high, the system could crash. To
avoid bringing down critical services,
you need to be proactive. Faster hard-
ware might not be an option, but a bet-
ter configuration and some simple opti-
mization steps might help. In this article,
five experts provide an inside look at
how to maximize throughput on your
web, mail, database, and file servers.

 A Healthy Start
No matter what kind of servers you
manage, there are a few basic rules that

every system administrator should
know:
1. Pay attention to the mix! One factor
often determines the overall system per-
formance: CPU, I/ O, or memory usage.
It makes sense to distribute services to
avoid running two services with the
same performance-defining factor on
the same server (Figure 1).

For example a mail server’s speed is
typically restricted by disk and network
latency. Of course, the integrated virus
scanner will keep the CPU busy on some
servers, but if not, the CPU on a server
that does nothing but distribute mail
should have plenty of time to handle
other tasks.

2. Monitor everything! The only way of
discovering the key performance factors
is to monitor operations over an ex-
tended period; this will give you values
for the CPU, I/ O, or memory usage dur-
ing normal operations. vmstat and sar
disk functions analyze disk throughput;
top, htop, uptime, or sar can help you
monitor the CPU; ps, top, or sar can help
you track memory consumption.

You can extrapolate a full load sce-
nario from the values for normal load.
SNMP based monitoring (using Nagios,
for example) will warn you of imminent
disaster. After identifying the bottle-
necks, don’t forget to disable unneeded
logging.

Your homepage was just linked by Slashdot, a new email campaign goes out tonight, and you need the

database to deliver survey results. We’ll show you how to help your servers survive the strain. BY BADRAN

F. ARWATI, PEER HEINLEIN, RALF HILDEBRANDT, CHARLY KÜHNAST, AND VOLKER LENDECKE

Tips for optimizing Apache, Postfix, Oracle, MySQL, and Samba

READY FOR TRAFFIC

w
w

w
.foto

lia
.d

e, a
n

d
y

b
112

6

Optimizing ServersSYSADMIN

60 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

61

3. Excessive swapping is every system
administrator’s nightmare. Many back-
end services let you configure an upper
threshold for the maximum number of
active instances. As swapping memory
in and out drastically impacts other disk
access, setting these thresholds too high
will leave more and more processes
waiting for the system to handle their
I/ O requests, which in turn leads to even
more swapping – a vicious circle.

All the services taken together should
not be allowed to spawn more instances
than the server machine’s physical mem-
ory can hold.

RAM or Disk?
4. Never waste your server’s memory.
Many back-end services can be stream-
lined; make sure you only load the mod-
ules you need, or rebuild packages to
match your needs. This gives you more
space for instances in RAM. By default,
Apache will typically load a bunch of
unnecessary services; if you have Post-
fix, you might consider building binaries
without MySQL, TLS, or LDAP support.
The memory footprint of CDB is much
smaller than that of the Berkeley DB.
With read-only maps, changing the map
type will often save memory.
5. Clearly separate partitions for data,
system, and logs! Separate partitions
give you the ability to select the best file-
system for the job (for example, Ext 3
for the system partition, and XFS for the
data partition). Some disk or RAID sys-
tems avoid hard disk thrashing in case
of competing, concurrent access.
6. Log the actions your services per-
form! Without logs, you will not have
any data to analyze or troubleshoot. A
- prefix in the logfile name in /etc/syslog.
conf enables asynchronous writing and
reduces the load on the filesystem.

Keep Safely
7. Back up your current configuration
before you make a change. Small
changes might affect your server’s per-
formance in a completely unprecedented
way, and finding out why can take up a
lot of your valuable time. A system
administrator should thus use version
control for configuration files, or at least
create a backup before implementing
changes. This gives you the ability to
react if customers complain of sudden
performance hits.

8. Store everything
that doesn’t change
in a cache! Caches
can be a big help in
many situations: re-
verse proxies (such
as Squid) upstream
of database-based
CMS systems can re-
duce the load on the
database. Caching
DNS servers (such as
Dns-Cache, or Bind)
remove the need for
log analyzers and
mail servers to per-
fom DNS lookups.
The internal cache in
the Amavisd New
virus scanner prevents repeated analysis
of the same content.

Use a Doorkeeper
9. Get rid of uninvited guests as early
as possible! Users without access to the
server can’t create load on the server. A
firewall, access controls, and smtpd_*_
checks in Postfix send uninvited guests
packing before they have a chance to
generated unwanted system load. The
Anvil server in Postfix [1] will addition-
ally restrict the number of messages the
server accepts over a unit of time to a
level that will prevent performance loss
due to queueing. In a similar way, Cband
[2] supports bandwidth limits on the
Apache web server.
10. Knock softly! Port knocking is a re-
source-saving way of keeping the fire-
wall completely tight but still allowing
trusted users to log on. Measures such as
using one-time passwords, or relocating
services such as SSH to unknown ports,
are good for security, and they’ll prevent
uninvited guests from stressing your
CPU.

 Web Servers
If your URL is published on a high-pro-
file site, you can expect a dramatic in-
crease in visitors. The following steps
will help your servers handle the load.
1. Take care to select the right multi-
processing module! The prefork MPM
forks a number of identical Apache pro-
cesses and is best suited to machines
with up to two CPUs. The more CPUs
your web server has, the more likely it is
that the worker MPM, which uses multi-

ple threads per process, is the better
choice.
2. Make good use of the cache! Apache
has two mechanisms, mod_disk_cache
and mod_mem_cache, for caching fre-
quently requested content. If you have a
lot of RAM (and, after all, there is no re-
placement for RAM), mod_mem_cache
[3] is your best option.

Ditch the Ballast
3. Ditch your ballast! The Htaccess
mechanism may be useful, but it is also
a performance killer. So, get rid of it if
you don’t need it. AllowOverride None
will remove the need for time-consum-
ing parsing of .htaccess.
4. Ditch even more ballast! Sysadmins
will also want to remove symlinks (Op-
tions -FollowSymLinks) and any modules
they don’t need. The perfect solution is
to build a static version of Apache with
everything you need, and not to load any
modules at all at runtime.
5. Do without lookups! Hostname look-
ups will slow down even the fastest
nameserver. HostnameLookups off re-
moves the bottleneck. If you really need
this information, you can perform any
lookups you need later when you review
your logs with a tool such as Webalizer.
6. Honor your clients, and don’t make
them wait. The MaxClients directive is
critical for web performance. If you set
too low a value for MaxClients, not all
clients will be serviced in a timely fash-
ion; if the value is too high, your clients
will be forced to wait in the TCP queue.
The only way to discover the right value
is load testing.

Figure 1: Two services with completely different CPU cycle, mem-

ory, and I/ O load requirements leverage the power of a server far

better than applications that compete for resources.

I/O RAM CPU I/O RAM
Perfor-
mance
Service 1

Service 2

Perfor-
mance

Perfor-
mance
Service 1

Service 2

Perfor-
mance

CPU

SYSADMINOptimizing Servers

61ISSUE 74 JANUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

7. Get rid of any logfiles you don’t need!
Logging costs time. Even a single logfile
that nobody needs is one too many. If
you log on external disks, make sure you
use an extremely fast SAN; NFS will tend
to be a bottleneck.
8. Always use sendfile! Sendfile is a sys-
tem call that delegates the passing of
files from network sockets to the kernel.
This saves memory (by doing without a
read buffer), and is quicker at the same
time. Apache will use sendfile if you en-
able EnableSendfile.
9. Be aware of MMAP! MMAP support,
via the mod_mmap_static module, gives
Apache the ability to access files like
contiguous memory space, which in turn
is good for performance.
10. Don’t use internal server monitor-
ing! Apache’s self-monitoring ability
(SetHandler server-status...) is useful for
tests and debugging, but make sure you
disable it after completing your tests.

 Mail Servers
If your mail server is threatening to
buckle under the load, you definitely
need to sort our your priorities. First of
all, you have to make sure that the sys-
tem stays stable and works effectively
despite the heavy load. Don’t even think
of optimizing for more speed until you
have achieved stability. Some practical
tips will help you manage the spikes.
1. Limit the number of instances! The
default value in the Postfix master.cf file
sets the maximum instance count to 100.
Depending on the version and built-in
capabilities, an instance can consume
about 3 MB RAM, quickly leading to an
out-of-memory condition on a server

with restricted resources, and thus to a
system crash. Spam and virus filters also
increase memory requirements if you
have multiple parallel instances running.

If swapping is slowing your server
down, it makes sense to reduce the num-
ber of instances. Many parallel instances
on an overloaded system will just inter-
fere with one another, severely affecting
the data throughput.
2. Help the spam filter with a RAM disk!
A spam and virus filter on mail servers,
such as Amavisd New or Spamassassin,
often cause bottlenecks. They generate a
heavy CPU and I/ O load, and thus im-
pact the total throughput. In this case,
swapping /var/spool/amavis/tmp out to
a RAM disk might help. The improved
performance means that the server can
now handle 14, instead of the seven in-
stances recommended by the vendor [4].

Avoid Roundabout Routes
3. Cache DNS requests! Mail servers rely
on DNS, and they have to handle count-
less requests. Which are the MX servers
in the domain? Does the sender’s do-
main really exist? Is the client on your
RBL list? A caching DNS server entry in
/etc/resolv.conf will save valuable milli-
seconds in high volume scenarios.
4. Avoid roundabout routes! The typical
approach is to forward mails from Post-
fix to the spam and virus filters, which
in turn hand them back to Postfix. Add
more rounds if you use other appliances.

It is preferable to avoid handing mes-
sages from virus or spam filters back to
Postfix and to pass them on to the next
appliance instead. If the mail chain han-
dles only incoming mail, the last appli-

ance in the chain can forward the emails
directly to an internal mail server instead
of handing them back to Postfix.

Check Responsibilities
5. Only respond if it is your responsibil-
ity! If you accept mails that you can’t de-
liver, you are forced to bounce and re-
turn the messages; this is a clear waste
of resources. Use local_recipient_maps
and relay_recipient_maps to tell Postfix
to accept mails for existing accounts
only. This avoids unnecessary load
when spammers are just trying out
addresses.

The same thing applies to source ad-
dresses: if the domain specified in the
header does not exist, the message must
be spam. And there is no way you can
respond. To improve total performance,
reject_unknown_sender_domain per-
forms a DNS lookup to validate the
source domain before the server accepts
the message.
6. Use only local files in Postfix lookup
tables! No matter how convenient
MySQL or LDAP-based user or domain
management may be, the effect it has
on Postfix performance is negative. A
lookup table in hash or preferably btree
format is far quicker. It makes sense to
code a script that writes the updated
user data from the MySQL or LDAP table
to a local file on the server every thirty
minutes.
7. Keep pesky clients at bay with rate
limiting! If you discover that an individ-
ual client is overtaxing the mail server,
or if an attack is in progress, rate limiting
via the smtpd_client_connection_rate_
limit parameter will prevent this from

Figure 2: Classic crash scenario: if the number of processes under

load increases so drastically that the machine starts to swap, the

drop in throughput will increase the load even more.

Physical
RAM

Process

Memory

Time Time

Physical
RAM

Process

Swap
Space

Computational step Computational step

Memory

Figure 3: As applications such as spam or virus filters on mail serv-

ers need constant access to files, it typically makes sense to invest

in a RAM disk for the filter software working directory on the server.

Postfix Postfix

Spam-
assasin

Postfix Postfix

Spam-
assasin

RAM
Disk

RAM
Disk

Optimizing ServersSYSADMIN

62 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

LinuxWorld US

SYSADMINOptimizing Servers

63ISSUE 74 JANUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

ADVERTISEMENT

affecting your mail traffic. A firewall can
restrict the maximum connect count,
and thus prevent hackers on compro-
mised clients tunneling back hundreds
of connections.
8. Don’t waste time with problematic
mails! If you have an outgoing mail
traffic jam, this could be due to Postfix
wasting resources on a large volume of
undeliverable mail. maximum_backoff_
time sets the time that Postfix will wait
before attempting to redeliver. Increasing
this value gives you more cycles to com-
plete a first try, instead of launching into
a series of repeats that are likely to fail.
As an alternative, you could set the fall-
back_relay parameter, which swaps
problematic messages out to another
machine that does the dirty work for
the mail server.

 Database Servers
The quality of the SQL queries, the
design of the database, and the server
configuration can considerably influence
database performance. The following
tips will help you boost your database
server’s performance.

 1. Choose the right indexes! The
indexes are one of the most important
things about a database; the server’s
response times depend to a great extent

on their quality. A B*TREE index (the
default index type for many databases)
should be used if the indexed column
can hold many different values. The
search tree for this index type will grow
more slowly than any other. For columns
with just a few different values (such as
product groups), a bitmap type index is
preferable for Oracle, or a similar type
for other databases.

For tables with just a few rows, TABLE
ACCESS (FULL) (or FULL TABLE SCAN
in MySQL) will be faster than index-
based access. If many queries use func-
tions such as UPPER(column xyz), an
index of the function results will give
you improved performance, assuming
the database engine you are using sup-
ports function-based indexes [5].
2. Always delete unneeded indexes! The
Oracle Optimizer does not use indexes
that are not required by a statement. No
matter whether an SQL statement uses
them or not, the SQL engine will still
load every single index that you define
for a table. This costs I/ O resources and
CPU load.
3. Avoid fragmented indexes! B*TREE
indexes are prone to fragmentation over
time, due to table updates or inserts, and
this really slows your queries down. You
can issue an ANALYZE INDEX index
name VALIDATE STRUCTURE in Oracle
to discover the fragmentation status.
ALTER INDEX index name REBUILD ON-
LINE will rebuild the index on the fly. In
MySQL, ANALYZE TABLE and OPTIMIZE
TABLE will rebuild a fragmented index.

The Right Expression
4. Optimize your SQL statements! SQL
is a flexible language, and many roads
lead to Rome. However, approaches very
often differ with respect to I/ O resource
usage. EXPLAIN PLAN in Oracle or EX-
PLAIN in MySQL can help you optimize:
these commands explain how the SQL
engine performs a query, how it uses in-
dexes, and how many interim results the
database will generate. MySQL 5.1 or
newer gives you an EXPLAIN PARTI-
TIONS feature to help you analyze
the runtime performance of partitioned
tables [6].
5. Make good use of your database’s
soft parsing feature! The database en-
gine parses SQL queries literally. The
engine will not relate queries that differ
with respect to a single literal (for exam-

ple SELECT...WHERE x=100... and
SELECT...WHERE x=200...). Thus a
copy of each of these queries is depos-
ited in the shared memory pool.

If queries which differ by a single lit-
eral reoccur, the database will store a
hundred copies in the memory pool
(hard parsing). This can lead to memory
fragmentation; more RAM will probably
not help. However, if your query uses a
variable in the WHERE clause instead of
a literal (command BIND SQL), the en-
gine will store the SQL query along with
the variable in RAM and not change it
when it is reused (soft parsing).

Divide and Conquer
6. Restrict the size of your tables. Tables
with millions of records consume vast
amounts of I/ O resources. One way of
reducing this consumption is to divide
large tables up into several blocks. Ora-
cle 8 and MySQL 5.1 or newer support
partitioning for tables. If you have SQL
statements that only reference certain
columns in their WHERE clauses, the
parser only has to query the correspond-
ing partitions (Figure 4). Partitioning can
be a big help with batch jobs that update
part of a table.
7. Keep OLTP and DSS separate! Differ-
ent types of database use mean different
resource requirements: Decision Support
Systems (DSS, [7]) such as research or
search systems typically perform many
select and sort operations, but very few
insert, update, or delete actions.

In contrast to this, an Online Transac-
tion Processing System (OLTP, [8]) such
as an online ordering or content man-
agement system, will typically serve
hundreds of users at the same time, and
all of them can modify the data. Thus,
the index tables will change constantly.

Choosing the right index is vital to
performance. If a database server is de-
ployed in both scenarios, you will need
to prioritize CPU usage by application
type. The easiest approach to doing
so with Oracle is to use the Resource
Manager [9].
8. Use persistent connections and the
shared server! Reestablishing non-persis-
tent connections consumes valuable
resources. On the other hand, Oracle
spawns a process for every connection
on a dedicated server and keeps the pro-
cess in memory, even if the user isn’t ac-
tually accessing the database. For this

Figure 4: Partitioned tables (supported by

MySQL 5.1) avoid the need for the parser to

read the whole table to process requests for

data from just one or two columns.

I/O

I/O

Parser
Parser

RAM RAM

Table

Tim
e

Date

Location

Date

Location

Tim
e

Table

Optimizing ServersSYSADMIN

64 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

SYSADMINOptimizing Servers

65ISSUE 74 JANUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

ADVERTISEMENT

reason, Oracle provides a shared server
solution that keeps the numbers of pro-
cesses to a minimum by managing con-
nections and queries in a large pool.
This helps save resources, especially on
OLTP systems.
9. Pay attention to timing with batch
jobs! Batch jobs should only run at times
when access levels are low, such as at
night.
10. Check the number of connections!
Separate application and web servers
from database servers for the most effec-
tive approach. Whatever you do, make
sure the maximum number of processes
on both sides are in agreement; if the
maximum number of processes on the
web server is higher than for the data-
base, the database might be swamped
with connections that it can’t handle
due to the large numbers of processes
involved.

The Apache MaxClients, KeepAlive,
MaxSpare-Servers, and Max-Requests-
PerChild directives must match your Ora-
cle settings. The SESSION and PROCESS
parameters, and the decision whether or
not to use a shared server, will influence
the maximum number of supported con-
nections. MySQL uses max_connections
and max_user_connections to set these
limits.

 Samba
If your Samba server does not serve up
your data as fast as you would like,
opening and saving files can be ex-
tremely time-consuming, and this will
affect productivity throughout the enter-
prise. These tips will help you fend off
bottlenecks.

1. Never touch your Samba configura-
tion! Samba comes with a perfect default
configuration that gives Windows clients
the best possible performance. If you ex-
perience performance problems despite
this, you should start by removing any
options you do not need from the smb.
conf configuration file before going on to
change options in phase two.
2. Be generous with RAM! 2 to 3 MB of
physical RAM per logged on user are the
minimum for a powerful Samba server.
The system can use every single byte on
top of this as cache memory for ever
better performance.
3. Check out your network! If file trans-
fers to and from the Samba server are
slow, use FTP to test. FTP is a very sim-
ple protocol that uses TCP-only data
streams and thus gives you the maxi-
mum transfer rate over your network.

Useful Helpers
4. Enable oplocks! An opportunistic
lock, or oplock for short, is not designed
to reserve files for exclusive use by one
user. Instead, an oplock gives the client
the ability to cache the file content. The
server assures the client that nobody
else will be able to access the file. If a
second user opens the file, the server
will contact the client, and the client will
release the oplock (Figure 5). The client
does not send its changes to the server
until this point, and this means consider-
able network bandwidth savings.
5. Launch Winbind! Without Winbind,
the Samba daemon has to set up a con-
nection for every new user, and this
causes an overhead of 40 to 60 IP pack-
ets. Winbind reduces this to three pack-

ets by keeping the connection to the
domain controller open.
6. Don’t distinguish between upper and
lower case. As Windows filenames are
not case-sensitive, but Unix filenames
are, Samba has to make sure that a file
called Test.txt does not exist if Windows
wants to create a file called test.txt. For
directories with over a thousand entries,
the resulting scan is bound to be heavy
on resources. If possible, restrict any di-
rectories managed by Samba to a small
number of files. If this is not an option,
disable the scan by disabling case sensi-
tive = yes, preserve case = no, and
default case = lower. Samba will then
display all filenames as lower case.

A Clear Conscience
It’s 6.30 pm. the response times on the
web server with the link from Slashdot
are acceptable. The mass mailing cam-
paign went off smoothly, and the data-
base has evaluated the survey well be-
fore the deadline. After applying the tips
in this article to optimize the server, it’s
time for the overworked system adminis-
trator to head for home, secure in know-
ing the systems can handle the load. ■

1] Postfix Anvil Server:
http:// www. postfix. org/ anvil. 8. html

[2] Cband: http:// cband. linux. pl

[3] Apache mod_mem_cache module:
http:// httpd. apache. org/ docs/ 2. 0/ mod/
mod_cache. html

[4] Performance metrics for virus and
spam checks:
http:// www. heinlein-support. de/
upload/ martinec. pdf

[5] Function-based indexes with Oracle:
http:// download-uk. oracle. com/ docs/
cd/ B14117_01/ server. 101/ b10752/
data_acc. htm#2185

[6] EXPLAIN PARTITIONS in MySQL 5.1:
http:// dev. mysql. com/ doc/ refman/ 5. 1/
en/ explain. html

[7] Decision Support Systems (Wikipe-
dia): http:// en. wikipedia. org/ wiki/
Decision_Support_System

[8] Online Transaction Processing (Wiki-
pedia): http:// en. wikipedia. org/ wiki/
Online_Transaction_Processing

[9] Oracle Resource Manager:
http:// download-uk. oracle. com/ docs/
cd/ B14117_01/ server. 101/ b10739/
dbrm. htm#i1010776

INFO

Figure 5: Opportunistic locks remove the need to sync clients and servers for write access

with just one user accessing the file. If another user needs access, the server will remove the

lock, and the client will return the modified file.

Server Client Server Client

Files

local
change

local
change

instant
sync

Sync
on
demand

Optimizing ServersSYSADMIN

66 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

