
72

You’re trying to call home, but
somebody is hogging the line.
Of course, you could always ask

your telco to enable call waiting [2]. The
service lets marathon phone users know
that a call is waiting by beeping every
couple of seconds. On the other hand,
the service costs money, and the beep
can get on your nerves. This is what
prompted me to buy a small phone
amplifier (Figure 1 and [3]), and put to-
gether a handy application.

The Smart Phone Recorder Control
grabs the signal off the phone line and
feeds it to the sound card in my Linux
computer. Linux can access the signal
via the /dev/dsp device, and the Perl
Audio::DSP module from CPAN will read
it. The script uses a couple of heuristic
tricks to determine whether the line is
busy, and if so, it keeps on trying until
the line is free, before notifying the user
via a hidden CGI script on a website.

Remote Sleeper
In its idle state, the phonewatch script
(Listing 1) on the Linux computer in

your home checks the website every 60
seconds to see whether someone has
clicked to run the CGI script and en-
abled the “Check” status (Figure 3).
If so, the script wakes up and starts to
collect data off the phone line. It dis-
plays a “busy” message on the web-
site while the line is busy, refreshing
the browser page every 60 seconds.

If you hang up, phonewatch
detects the status change and
switches the CGI script status back
to “idle”.

The infinite loop that starts in
Line 24 detects the status on the
website, and sleeps for $IDLE_
POLL seconds, while state is set
to idle. The state() function sim-
ply serves to query the current
status. However, it can set a new
status if you pass a parameter in
to it. Both of these tasks are han-
dled by a get call from the LWP::
Simple module, which references
a website by its URL. It filters the
script status out of the tag
in the page content returned in the
response.

Audio Fishing
The Audio::DSP class constructor
expects four parameters: the length
of the data buffer to fill (1024), the
number of channels (1 here, for
mono), the sample format (unsigned
8bit), and the sampling rate (1024
samples per second).

Digital audio data is written in a nu-
meric format that an ADC samples n
times per second from the analog sound
signal. The sampling rate n
must

If you can’t get through to your home number, a script can check the

line status and send a signal to you via the Web to tell you when the line

is free. BY MICHAEL SCHILLI

Alternative call waiting service with Perl

THE LISTENER

Figure 1: Smart Phone Recorder Control by

Radio Shack feeds the signal from the phone

line to the sound card in a Linux computer.

Perl: Call WaitingPROGRAMMING

72 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

73

be twice the size of the highest audio
frequency you want to sample; that is
about 40,000 samples per second for
HiFi quality (slightly above 20 kHz). As
we do not actually need to eavesdrop the
conversation, 1024 samples per second
are perfectly ok. For more information
on “Digital Audio” refer to [2].

Within a second, phonewatch fills up
the data buffer, and feeds it to the sam-
ple_add() method of the module shown
in the SoundActivity.pm script (Listing
2). The method unpacks the 8-bit values
(unpack("C")) from the data block
passed to it, and calculates the standard
deviation for the values. The sound card

will not be able to pick up a signal from
a line that is down; there is only some
noise at the sound card’s microphone
input.

In idle state, the sampling values,
which have a range of between 0 and
255, will all be approximately 127, and
will deviate by a maximum of 1 to either
side. The standard deviation was typi-
cally around 0.5 in my lab.

The sdev method that starts in Line 84
of SoundActivity.pm calculates the stan-
dard deviation for the elements in an
array passed in as a pointer to an accu-
racy of two decimal places. sdev() uses
the CPAN Statistics::Basic::StdDev mod-

ule for the simple mathematics required
here.

Wake Up and Sample!
In active mode, phonewatch hangs
around in the poll_busy() function. It
samples the sound card for a second,
waits for 10 seconds, and then ascertains
the next sample point. The five recorded
values for the standard deviation would
look something like this for a phone call:
[0.64, 0.78, 0.73, 0.89, 0.86]

The maximum number of entries in
the standard deviation history is defined
by the parameter max_hist in Sound-
Activity.pm. min_hist defines the mini-

01 #!/usr/bin/perl -w

02

03 use strict;

04 use Audio::DSP;

05 use Log::Log4perl qw(:easy);

06 use SoundActivity;

07 use LWP::Simple;

08

09 Log::Log4perl->easy_init(

10 {

11 file =>

12 “/tmp/phonewatch.log”,

13 level => $INFO,

14 }

15);

16

17 my $IN_USE_POLL = 10;

18 my $IDLE_POLL = 60;

19 my $STATUS_URL =

20 ‘https://u:p@_foo.com/
phonewatch.cgi’;

21 my $SAMPLE_RATE = 1024;

22

23 INFO “Starting up”;

24 while (1) {

25 my $state = state();

26

27 if (!defined $state) {

28 DEBUG “Fetch failed”;

29 sleep $IDLE_POLL;

30 next;

31 }

32

33 DEBUG

34 “web site state: $state”;

35

36 if ($state eq “idle”) {

37 DEBUG “Staying idle”;

38 sleep $IDLE_POLL;

39 next;

40 }

41

42 INFO “Monitor requested”;

43 state(“busy”);

44 poll_busy();

45 state(“idle”);

46 }

47 #############################

48 sub poll_busy {

49 #############################

50 my $dsp = new Audio::DSP(

51 buffer => 1024,

52 channels => 1,

53 format => 8,

54 rate => $SAMPLE_RATE,

55);

56

57 $dsp->init()

58 or die $dsp->errstr();

59

60 my $act =

61 SoundActivity->new();

62

63 while (1) {

64 DEBUG “Reading DSP”;

65 $dsp->read()

66 or die $dsp->errstr();

67

68 $act->sample_add(

69 $dsp->data());

70 $dsp->clear();

71

72 if (!$act->is_active()) {

73 INFO “Hangup detected”;

74 $dsp->close();

75 return 1;

76 }

77 sleep $IN_USE_POLL;

78 }

79 }

80 #############################

81 sub state {

82 #############################

83 my ($value) = @_;

84

85 my $url = $STATUS_URL;

86 $url .= “?state=$value”

87 if $value;

88 DEBUG “Fetching $url”;

89 my $content = get $url;

90 if ($content =~

91 m#(.*?)#)

92 {

93 return $1;

94 }

95 }

Listing 1: phonewatch

PROGRAMMINGPerl: Call Waiting

73ISSUE 74 JANUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

mum number of historic values required
by the module to safely guess the line
status. When you hang up, the line goes
quiet again, and the standard deviation
history levels out at a constant value:
[0.51, 0.51, 0.51, 0.51, 0.51]

To distinguish between these two
states, SoundActivity.pm simply reevalu-
ates the standard deviation for these
five historic values. If it is less than 0.01,
the line is assumed to be down, and
is_active() will return a value of false.

The CGI script on the web server
stores its state across multiple calls in
phonewatch.dat, where it stores a persis-
tent hash called %store. New status
values are written by the CGI state
parameter.

All the script has to do then is to re-
trieve the appropriate state color from
the %states hash, and call the process
method from the template toolkit with
the HTML template defined in the DATA
attachment. This generates an HTML
rendering of the page by interpreting the
simple but effective template language.
At the same time, a reload meta-tag is in-
jected into the page to tell the browser to

01 #############################

02 # Mike Schilli, 2006

03 # m@perlmeister.com

04 #############################

05 package SoundActivity;

06 #############################

07

08 use strict;

09 use warnings;

10 use

11 Statistics::Basic::StdDev;

12 use Log::Log4perl qw(:easy);

13

14 #############################

15 sub new {

16 #############################

17

18 my ($class, %options) = @_;

19

20 my $self = {

21 min_hist => 5,

22 max_hist => 5,

23 history => [],

24 sdev_threshold => 0.01,

25 %options,

26 };

27

28 bless $self, $class;

29 }

30

31 #############################

32 sub sample_add {

33 #############################

34

35 my ($self, $data) = @_;

36

37 my $len = length($data);

38 my @samples =

39 unpack(“C$len”, $data);

40

41 my $sdev =

42 $self->sdev(\@samples);

43

44 my $h = $self->{history};

45 push @$h, $sdev;

46 shift @$h

47 if @$h >

48 $self->{max_hist};

49 DEBUG “History: [“,

50 join(‘, ‘, @$h), “]”;

51 }

52

53 #############################

54 sub is_active {

55 #############################

56

57 my ($self) = @_;

58

59 if (@{ $self->{history} } <

60 $self->{min_hist})

61 {

62 DEBUG

63 “Not enough samples yet”;

64 return 1;

65 }

66

67 my $sdev =

68 $self->sdev(

69 $self->{history});

70 DEBUG “sdev=$sdev”;

71

72 if ($sdev <

73 $self->{sdev_threshold})

74 {

75 DEBUG

76 “sdev too low ($sdev)”;

77 return 0;

78 }

79

80 return 1;

81 }

82

83 #############################

84 sub sdev {

85 #############################

86

87 my ($self, $aref) = @_;

88

89 return sprintf “%.2f”,

90 Statistics::Basic::StdDev

91 ->new($aref)->query;

92 }

93

94 1;

Listing 2: SoundActivity.pm

Figure 2: A website enables the script on the

Linux machine and outputs the call status.

Soundcard

»/dev/dsp«

Linux

43-2208

Web Server
»phone-

watch. cgi«

Monitor
Status:
»Busy« Internet

LAN

[1] Call Waiting: http:// en. wikipedia. org/
wiki/ Call_waiting

[2] Ken C. Pohlmann: Principles of Digital
Audio, McGraw Hill, 2005

[3] Smart Phone Recorder Control, Radio
Shack catalog, http:// www. radioshack.
com/ search/ index. jsp?kw=43-2208

[4] Listings for this article: http:// www.
linux-magazine. com/ Magazine/
Downloads/ 74/ Perl

INFO

Perl: Call WaitingPROGRAMMING

74 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

ADVERTISEMENT

ADVERTISEMENT

refresh the page every
30 seconds with a call
to the CGI script. In
turn, this ensures that
the state() change, de-
tected by the Linux
machine when the
caller hangs up, is
passed on to the
browser to end the us-
er’s wait.

When called with-
out any parameters,
the CGI script simply
returns the current
state as formatted
HTML: However, if a
new state is passed to
the script in the CGI
status parameter (idle,
busy, or check), the
script modifies its in-
ternal status, and
stores it permanently.

It is not a good idea
to expose the script on
the untrusted Internet;
a simple form of pro-
tection would be to
use a .htaccess file that
prompts the user for a
username and pass-

word. When phonewatch calls the CGI
script, it simply bundles the credentials
with the URL, https://user:pass@URL....

Same Old Song
Getting a sound card to run on Linux is
not always simple, however, Audacity
worked perfectly with ALSA 1.0.13,
which I used for my experiments. It is
important to switch the microphone
input from “Line” to “Mic” in the alsa-
mixer (Figure 5) to enhance the gain.

The CPAN modules used by the scripts
are easily installed using a CPAN shell,
as always; you will want to install the
additional SoundActivity module in the
same directory as phonewatch, or in a
directory in which phonewatch will be
able to find it.

The logging level for phonewatch is set
to $INFO by default, and this default
level only appends a minimal amount of
critical status information to the /tmp/
phonewatch.log logfile. You might prefer
to set the level to $DEBUG for more
detail.

Set up an entry in your inittab to auto-
matically launch the script. This sends
the program into an infinite loop and
gives you a friendly helper that you can
enable from wherever you are with a
web browser. ■

01 #!/usr/bin/perl -w

02 use strict;

03 use CGI qw(:all);

04 use DB_File;

05 use Template;

06

07 my %states = (

08 idle => ‘green’,

09 check => ‘yellow’,

10 busy => ‘red’,

11);

12 tie my %store, “DB_File”,

13 “data/phonewatch.dat”

14 or die $!;

15 $store{state} = “idle”

16 unless

17 defined $store{state};

18 print header();

19 my $new = param(‘state’);

20 if ($new

21 and exists $states{$new})

22 {

23 $store{state} = $new;

24 }

25 my $tpl = Template->new();

26 $tpl->process(

27 \join(‘’, <DATA>),

28 {

29 bgcolor =>

30 $states{ $store{state} },

31 state => $store{state},

32 self => url(),

33 }

34)

35 or die $tpl->error;

36 #############################

37 __DATA__

38 <HEAD>

39 <META HTTP-EQUIV=”Refresh”

40 CONTENT=”30;

41 URL=[% self %]”>

42 </HEAD>

43 <BODY>

44 <H1>Phone Monitor</H1>

45 <TABLE CELLPADDING=5>

46 <TR>

47 <TD BGCOLOR=”[% bgcolor
%]”>

48 Status: [% state
%]

49 </TD>

50 [% IF state == “idle” %]

51 <TD>

52 <A HREF=”[% self
%]?state=check”>

53 check

54 </TD>

55 [% END %]

56 </TR>

57 </TABLE>

58 </BODY>

Listing 3: phonewatch.cgi

Figure 5: To make sure the microphone input on your sound card

works properly, the control on the far right in alsamixer should

be set to “Mic” and not to “Line”.

Figure 3: The CGI script is in

idle mode; the listener is wait-

ing for action.

Figure 4: The listener verifies

that the line is busy and dis-

plays a message.

Perl: Call WaitingPROGRAMMING

76 ISSUE 74 JANUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

