
88

Anyone who has compiled a pro-
gram from the source code will
be familiar with the make tool,

the central part of the configure, make,
make install three-card trick for building
and installing software on Linux. This is
not the only situation in which make pro-
vides useful service. Make can also assist
with other tasks, for example, in larger
projects, LaTeX users can use make to au-
tomatically recompile and create a Post-
script or PDF document if one or multiple
source files have changed.

Make also helps sysadmins, and it can
automatically launch a backup script if
you have modified one or more files. A
control file, makefile, describes the chores
you want make to handle. After setting
up the makefile, you can simply call
make – and let it do all the work.

The make program is available for a
variety of platforms. In this article, we
will be looking at GNU make, which is
used in the Linux world. I’ll investigate
the makefile layout and introduce the
command’s most interesting options.

A Question of Control
The makefile is the control point for
working with make. Each makefile holds

a list of instructions. Make expects a
GNUmakefile, makefile, or Makefile, and
it looks for the control file in this order
in the current directory. The makefile
contains rules that follow this syntax:

Target: Dependency (ies)
 command
 command
 ...

The target refers to the expected result of
the commands that follow. The colon is
followed by one or multiple files required
to build the target, that is, on which
the target depends. This list is followed
by the actions that make will perform,
provided the dependencies are fulfilled.

Keep to the following syntax rules
when creating makefiles:
• Comments are prefixed by a pound

sign (#).
• Dependencies are blank separated and

follow the colon that follows the target.
• Each command occupies a separate

line. Commands are typically tab in-
dented; if you use blanks, make might
refuse to work, and you will see a
message such as makefile:4: *** miss-
ing separator. Stop.

• If you prefer to list the commands in a
single line, use semicolons to separate
them. Tab indenting is mandatory.

• You can wrap long lines by inserting a
backslash (\) at the end of the line.
The backslash has to be the last char-
acter in the line.

A Great Team – Make and
LaTeX
To demonstrate make in a practical situ-
ation, let’s look at a makefile that helps
users create books with LaTeX. The book
is stored in multiple documents; in other
words, there is a Tex file for each chap-
ter. LaTeX will compile these compo-
nents to create a file called book.tex.

First create the DVI file. We want
make to call the latex command when-
ever the source files change after this.

book.dvi: chap01.tex U
chap02.tex chap03.tex \
 chap04.tex chap05.tex U
 chap06.tex \
 chap07.tex book.tex
 latex book

We will be using the Dvips program with
a variety of parameters to automatically

Developers, LaTeX users, and

 system administrators can all

 harness the power of make.

BY HEIKE JURZIK

Handling of complex tasks with make

w
w

w
.p

h
oto

ca
se.co

m

MAKE AND BAKE

Command Line: makeLINUXUSER

88 ISSUE 75 FEBRUARY 2007 W W W. L I N U X- M A G A Z I N E . C O M

89

create a Postscript file. The tool has
nothing to do, unless the DVI file for the
first target has changed:

book.ps: book.dvi
 dvips -q -o book.ps book

If you like, you can add another target to
create a PDF document from the Post-
script file:

book.pdf: book.ps
 ps2pdf book.ps book.pdf

A good backup is definitely worthwhile
after all that work. It makes sense to bun-
dle the Tex files, the Postscript file, and
PDF into a compressed Bzip2 tar archive,
and then run SCP to copy it to a remote
machine – better be to safe than sorry:

backup: chap01.tex chap02.tex U
chap03.tex \
 chap04.tex chap05.tex U
chap06.tex \
 chap07.tex book.tex bU
uch.ps \
 book.pdf
 tar cvfj backup.tar.bz2 U
*.tex book.ps book.pdf
 scp backup.tar.bz2 huhn@U
asteroid.huhnix.org:

Make at Work
There are various options for using make-
files like this. If you run make without
passing in any other parameters, make
will simply process the first target, that is,
a DVI file if you have modified one or
more Tex files.

As an alternative, you can pass a differ-
ent target in to make when you call the
tool, for example make backup, to create
a safe copy, or make buch.pdf to create
the PDF document.

Just as a reminder: make creates the
PDF from the Postscript file by calling
the ps2pdf command; the Postscript file
is created from the DVI file, which is the
makefile’s first target. If anything has
changed on the way to the Postscript

file, make will process all the targets
from the top down (Figure 1). If there is
nothing to do, make will let you know:

make: `buch.pdf' is up to date.

A Question of Options
Make has a number of other command
line parameters. If the control file uses
a name that make does not associate
with a makefile, you need to pass in
the filename, along with instructions
for processing it, by setting the -f flag:

make -f controlfile

It is also possible to specifically name
the working directory. If you are cur-
rently at a different location on the file-
system, you can use the -C parameter
to tell make where to go to work:

$ make -C ~/book
make: Entering directory U
`/home/huhn/book'
latex book
...
make: Leaving directory U
`/home/huhn/book'

If the source files haven't changed, you
can “force” a build with the -B option:

$ make -B book.pdf
latex book
...
Transcript written on book.log.
dvips -q -o book.ps book
ps2pdf book.ps book.pdf

And if you are interested in finding out
what is going on under the hood, you
can set the -d (for debug) option for ver-
bose output (Figure 2). To prevent the
output from scrolling off the screen, you
might like to pipe it to a pager such as
less or more:

make -d | less

Versatile
The LaTeX example uses a couple of Tex
files, which keeps the makefile fairly
readable. When the number of source
files starts to grow, it is easy to lose
track. To prevent this, make gives you
the option of defining variables.

To assign a variable called TEXFILES
to the LaTeX files, you define the vari-
able at the start of the Makefile:

TEXFILES = chap01.tex chap02U
.tex chap03.tex \
 chap04.tex chap05U
.tex chap06.tex \
 chap07.tex book.U
tex

Then reference the variable in the make-
file, as $(VARIABLENAME), for example:

book.dvi: $(TEXFILES)
 latex book

Make also has some standard variables.
For example, $@ refers to the current
target, and $? refers to modified depen-
dencies, that is, to the files that follow
the colon. ■

DVI: Device Independent output format
is an output file developed for the TeX
text system to store the results of the
latex file.tex command. This format is
suitable for screen viewing, or printing.

GLOSSARY

Figure 1: Looking for changes with make.

LINUXUSERCommand Line: make

89ISSUE 75 FEBRUARY 2007W W W. L I N U X- M A G A Z I N E . C O M

