
70

Users normally don’t get to see
what’s going on under the cov-
ers of a LAN. One hidden activ-

ity is packet addressing on the last hop
of a route, which includes discovering a
device’s unique MAC address to match
an IP address. This activity is the do-
main of the ARP protocol.

Watching all MAC addresses currently
in use can lead to interesting conclu-
sions about who is using or abusing a
local network.

You may recall my fellow col-
umnist Charly Kühnast talked
about arpalert [4] previ-
ously [2]. The daemon
monitors ARP re-
quests and com-
pares their MAC
addresses with a
whitelist.

Unknown
MAC addresses
trigger an alert.
However, dupli-
cate alerts can
occur for the
same incident,
and the accom-
panying docu-
mentation
leaves much to
be desired.

Luckily, the
Net::Pcap and
NetPacket::Ether-
net modules from
CPAN make it fairly

easy to craft a Perl script to extract the
MAC address from the packets whizzing
around on your LAN.

Rose, the object-oriented database
mapper, provides an easy way to store
the data you harvest in a MySQL data-
base, which you can review later when
you have time. If you need to determine
which devices have been active on your
LAN in, say, the last 24 hours, you can
simply call the script lastaccess (shown

later in Listing 6), which produces the
output shown in Figure 1.

Sniffing as Root
Just like the graphical network sniffer,
capture, which I discussed in issue 49
([3]), the arpcollect script in Listing 1
first switches the network card in your
computer to promiscuous mode. In this
mode, the card not only picks up packets
addressed to it, but passes any packets it
finds to the sniffing script.

Root privileges are required for this,
and line 11 checks for them. If you do
not have root privileges, the script sim-
ply quits with an error message.

The lookupdev() function called in
line 16 returns the name of the first
available network device. If you only

have one NIC, this will be "eth0".
The following call to open_live()

enters an infinite loop (the
timeout has been disabled

with a value of -1), which
reads the first 128 bytes

of every incoming
packet, and then im-

mediately calls the
callback function.

The function
is passed both
to the local
network ad-
dress and
mask in
$user_data,
and the
raw data
for the
packet in
$raw_
packet.

The Net-
Packet::Eth-

ernet module
decodes the

They say darkness is the friend of thieves, but the Perl daemon in this

month’s column illuminates dastardly deeds, exposing hidden activities

and alerting the admin when things seem to be going awry.

BY MICHAEL SCHILLI

Monitoring LAN devices with Perl

LIGHT INTO THE
DARKNESS

w
w

w
.sxc.h

u

Perl: Monitoring MAC AddressesPROGRAMMING

70 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

71

Ethernet frame, and it reveals the hex-
formatted MAC source address in the
src_mac hash key.

As the address does not yet include
the typical colon separators after every
second digit, line 50 uses a regular ex-
pression to insert the separators.

In lines 62 through 65, arpcollect refer-
ences the packet’s IP address to check
whether the packet originated with a de-
vice on the local network.

It discovers the IP address by reading
the Ethernet packet payload, which is
extracted by the NetPacket::Ethernet
module’s strip() function. The resulting

raw IP packet is unpacked by the Net-
Packet::IP module’s decode() function
and the IP source address is revealed by
the src_ip hash key.

If a bitwise AND of the IP address and
the network address returns the network
address, we can then assume the packet
was sent by a device on the local net-
work and that it is relevant for further
processing.

The event_add() method of the Watch-
LAN database object accepts the IP ad-
dress and the MAC address and drops
them into the database for later analysis.

One Minute Buffer
The WatchLAN.pm module implements
the storage layer. It would be impractical
to write each packet to the database
straight away; this would involve multi-
ple write operations per second, even on
a low-activity network. Additionally, a
table with millions of lines would con-
sume valuable disk space and computa-
tional resources.

This is the reason why WatchLAN.pm
(see Listing 3) first stores the incoming

packet addresses in a temporary hash,
which is then transferred to the database
once every minute.

A counter is incremented for each IP
/ MAC combination and stored in the
counter column of the activity database
table by the cache_flush() method. The
flush_interval parameter in the Watch-
LAN constructor determines how often
the cache is flushed.

The future date of the next flush oper-
ation is calculated by adding flush_
interval to the current time and stored in
the instance variable next_update.

Listing 2 shows the shell commands
that are needed in order to create a new
MySQL database.

The SQL commands to set up all used
tables (Figure 2) are in a separate file
sql.txt, shown in Figure 3.

As shown in Figure 3, foreign keys are
used to link the main activity table to the
device and ip_address tables.

device stores the MAC addresses along
with the device data; ip_address simply
stores IP addresses and assigns them a
sequence number.

Figure 1: The lastaccess script reveals which

devices have been active on your LAN in the

past 24 hours.

01 #!/usr/bin/perl -w

02 use strict;

03 use Net::Pcap;

04 use NetPacket::IP;

05 use NetPacket::Ethernet;

06 use Socket;

07 use WatchLAN;

08

 09 die "You need to be root ",

10 "to run this.\n"

11 if $> != 0;

12

 13 my($err, $netaddr, $netmask);

14

 15 my $dev =

16 Net::Pcap::lookupdev(\$err);

17

 18 Net::Pcap::lookupnet($dev,

19 \$netaddr, \$netmask, \$err)

20 and die

21 "lookupnet $dev failed ($!)";

22

 23 my $object =

24 Net::Pcap::open_live($dev,

25 128, 1, -1, \$err);

26

 27 my $db = WatchLAN->new();

28

 29 Net::Pcap::loop($object, -1,

30 \&callback,

31 [$netaddr, $netmask]);

32

 33 #############################

34 sub callback {

35 #############################

36 my ($user_data, $hdr,

37 $raw_packet) = @_;

38

 39 my ($netaddr, $netmask) =

40 @$user_data;

41

 42 my $packet =

43 NetPacket::Ethernet

44 ->decode($raw_packet);

45

 46 my $src_mac =

47 $packet->{src_mac};

48

 49 # Add separating colons

50 $src_mac =~

51 s/(..)(?!$)/$1:/g;

52

 53 my $edata =

54 NetPacket::Ethernet::strip

55 ($raw_packet);

56

 57 my $ip =

58 NetPacket::IP->decode(

59 $edata);

60

 61 # Coming from local network?

62 if (

63 (inet_aton($ip->{src_ip}) &

64 pack('N', $netmask)

65) eq pack('N', $netaddr)

66) {

67 $db->event_add($src_mac,

68 $ip->{src_ip});

69 }

70 }

Listing 1: arpcollect

PROGRAMMINGPerl: Monitoring MAC Addresses

71ISSUE 76 MARCH 2007W W W. L I N U X- M A G A Z I N E . C O M

Storing the addresses in the main table
would not only waste storage space, but
also generate redundant data.

Special Treatment for
MySQL
MySQL doesn’t make it easy for the
Rose::DB loader to detect these relations
automatically. According to Rose::DB au-
thor John Siracusa, you need to provide
correct REFERENCES clauses for foreign
key declarations and also define an
index on both the referencing and refer-
enced columns.

Once the SQL definition has been es-
tablished as shown, WatchLAN.pm
simply needs to call the make_classes
method to have Rose::DB contact the
database and autonomously define the
complete object wrapper for all the ta-
bles and columns, including those re-
ferenced from separate tables.

What Do I Know?
The WatchLAN module calls the Rose
loader whenever an application calls use
WatchLAN. WatchLAN stores the data-
base schema as an object-oriented ab-
straction in the Perl namespace below
WatchLAN::.

When the cache_flush() method needs
to save temporary hash data in the data-
base, WatchLAN responds by creating a
new $activity object of the WatchLAN::
Activity class.

This not only facilitates updates in the
activity table but also in referenced ta-
bles like devices and ip_addresses. The
innocent-looking construct:

$activity->device({
 mac_address => $mac });

causes two things to happen later, when
the object’s save() method gets called. If
the devices table does not have an entry
for the device with the given MAC ad-
dress yet, it creates a new record there.
In the main table activity, it adds the
newly created device C<id> as a for-
eign key in the device_id column.

In contrast to the method call above,
curly braces are not required to create a
new entry in the activity table that does
not reach out to referenced tables.

A call to $activity->counter($counter)
sets the counter column value $counter
in the current activity record to the value
of $counter. After a call to save() in line
93, it gets flushed to the database. By the
time this is done, cache_flush() is fin-
ished and can clear its cache in line 96.
It then calculates the next cache flush
interval, and returns to the calling func-
tion. device_add() performs similar
functions, it either inserts a new device
along with a MAC address, or modifies
the entry for an existing device.

The call to $device->load(speculative
=> 1); loads a record from the devices
table to match the MAC address that was
specified previously in the WatchLAN::
Device constructor.

The load method works in this case
because we defined the mac_address
column as the unique key, using
UNIQUE(mac_address) when creating
the database.

Rose detects this and then allows us to
load the record based on this criterion. If
this were not so, it would then be neces-
sary to formulate a query to search for
the record.

The speculative parameter specifies
that it is ok for a record not to exist. If
so, a subsequent call to save() will cre-
ate the record.

Avoiding Waste
Rose has a fairly wasteful approach to
database connections. Each new Watch-
LAN::Activity class object calls the DBI
module’s connect() function, and Rose
drops the connection when it is done

with the object. This avoids undesirable
side-effects when working with database
transactions, but it is obviously a waste
of time if you are working without them,
as in our case.

Simply loading the Apache::DBI mod-
ule causes it to interfere with how Perl’s
DBI module handles connections and
ensures that only a single persistent da-
tabase connection behind the scenes is
being used.

The devices table not only holds
the MAC addresses, but it also assigns
expressive device names. Thus,
00:11:11:5b:ed:46 becomes “Mike’s
Linux Box”. At the same time, the entry
proves that this is a trusted device on the
local network.

On the other hand, if your neighbor
tries to steal bandwidth off your wireless
LAN, arpcollect will detect the intrusion
and enter the MAC address in the devices
table but leave the name empty.

The monitoring script arpemail, which
we will be looking at later, notices this
irregularity and notifies the admin by
email. To enter MAC addresses for
known devices on the LAN, the script
namedev reads the entries in its DATA
section line by line. The format used

01 #!/bin/sh

02 DBNAME=watchlan

03 mysqladmin -f -uroot drop U

$DBNAME

04 mysqladmin -uroot create U

$DBNAME

05 mysql -uroot $DBNAME <sql.txt

Listing 2: New database

Figure 2: The three tables in the database

schema.

Figure 3: These SQL commands create the

required MySQL database.

Perl: Monitoring MAC AddressesPROGRAMMING

72 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

here is exactly what the original arpalert
script [4] expects in its configuration file.

Alarm in Sector B
After running namedev, only unknown
devices on the LAN will have a name
value of NULL in the device table. To de-

termine all activity entries referencing
device entries with a NULL name field,
we must JOIN the two tables. If we also
need the IP address for the entry, no less
than three tables are involved. Rose han-
dles this behind the scenes. The arpe-
mail script (see Listing 5) notifies the

system administrator whenever a previ-
ously unknown MAC address is detected
in the device table. arpemail uses the
WatchLAN::Activity::Manager class to
search for records by running an SQL
query. The get_activity() method in line
14 queries the activity table, and the

001 #############################

002 package WatchLAN;

003 #############################

004 use strict;

005 # share a single DB conn

006 use Apache::DBI;

007 use Rose::DB::Object::Loader;

008 use Log::Log4perl qw(:easy);

009 use DateTime;

010

 011 my $loader =

012 Rose::DB::Object::Loader

013 ->new(

014 db_dsn =>

015 'dbi:mysql:dbname=watchlan',

016 db_username => 'root',

017 db_password => undef,

018 db_options => {

019 AutoCommit => 1,

020 RaiseError => 1

021 },

022 class_prefix =>

023 'WatchLAN'

024);

025

 026 $loader->make_classes();

027

 028 #############################

029 sub new {

030 #############################

031 my ($class) = @_;

032

 033 my $self = {

034 cache => {},

035 flush_interval => 60,

036 next_update => undef,

037 };

038

 039 bless $self, $class;

040 $self->cache_flush();

041

 042 return $self;

043 }

044

 045 #############################

046 sub event_add {

047 #############################

048 my ($self, $mac, $ip) = @_;

049

 050 $self->{cache}->

051 {"$mac,$ip"}++;

052

 053 $self->cache_flush()

054 if time() >

055 $self->{next_update};

056 }

057

 058 #############################

059 sub cache_flush {

060 #############################

061 my ($self) = @_;

062

 063 for my $key (

064 keys %{ $self->{cache} })

065 {

066 my ($mac, $ip) =

067 split /,/, $key;

068

 069 my $counter =

070 $self->{cache}->{$key};

071

 072 my $minute =

073 DateTime->from_epoch(

074 epoch =>

075 $self->{next_update} -

076 $self->{flush_interval},

077 time_zone => "local",

078);

079

 080 my $activity =

081 WatchLAN::Activity->new(

082 minute => $minute);

083

 084 $activity->device({

085 mac_address => $mac });

086

 087 $activity->ip_address({

088 string => $ip });

089

 090 $activity->counter(

091 $counter);

092

 093 $activity->save();

094 }

095

 096 $self->{cache} = {};

097 $self->{next_update} =

098 time() - (

099 time() %

100 $self->{flush_interval})

101 + $self->{flush_interval};

102 }

103

 104 #############################

105 sub device_add {

106 #############################

107 my ($self, $name,

108 $mac_address) = @_;

109

 110 my $device =

111 WatchLAN::Device->new(

112 mac_address =>

113 $mac_address);

114 $device->load(

115 speculative => 1);

116

 117 $device->name($name);

118 $device->save();

119 }

120

 121 1;

Listing 3: WatchLAN.pm

PROGRAMMINGPerl: Monitoring MAC Addresses

73ISSUE 76 MARCH 2007W W W. L I N U X- M A G A Z I N E . C O M

with_objects parameter ensures that the
data referenced in the device and ip_ad-
dress tables are also extracted. Rose enu-
merates the tables as t1 (activity), t2 (de-
vice), and t3 (ip_address); thus the ab-
stracted SQL query:

query => ["t2.name" =>undef]

in line 19 refers to the device table and
checks for entries with a value of NULL
in the name column. The result of this
query is a reference to an array of match-

ing database entries, each of which is a
WatchLAN::Activity-type object, which
provides methods for querying its own
column values and the values in the ref-
erenced tables.

arpemail “remembers” devices it has
tagged as being suspicious in a file-
based Cache::File-type cache to avoid
issuing repeat messages with the same
warning. If a cache entry exists for the
MAC address $mac, then the following
construct returns a false value:

 !$cache->get($mac) &&
($cache->set($mac, 0) || 1);

If $mac is unknown, the cache’s get
method will return false, which will then
get negated to true, which causes the
statement following the logical AND to
be executed.

The subsequent set method is used to
add the new value to the cache, and the
following ||1 always makes it return a
true value, no matter what the actual re-
turn value of set is.

The enclosing grep command in line
24 ff. uses this twisted logic and filters
MAC addresses stored in the cache from
the list of potential bandwidth thieves
stored in $events.

01 #!/usr/bin/perl

02 use strict;

03 use warnings;

04 use WatchLAN;

05

06 my $db = WatchLAN->new();

07

08 while (<DATA>) {

09 if (/^#\s+(.*)/) {

10 my $name = $1;

11 my $nextline = <DATA>;

12 chomp $nextline;

13 my ($mac, $ip, $ip_change)

14 = split ' ', $nextline;

15 $db->device_add($name,

16 $mac);

17 }

18 }

19

20 __DATA__

21

22 # Slimbox

23 00:04:20:03:00:0d 192.168.0.74
ip_change

24

25 # Laptop Wireless

26 00:16:6f:8d:58:db 192.168.0.75
ip_change

27

28 # Laptop Wired

29 00:15:60:c3:44:10 192.168.0.71
ip_change

30

31 # Mike's Linux Box

32 00:11:11:5b:ed:46 192.168.0.18

33

34 ...

Listing 4: namedev

01 #!/usr/bin/perl -w

02 use strict;

03 use WatchLAN;

04 use Mail::Mailer;

05 use Cache::File;

06 use Template;

07 my $cache =

08 Cache::File->new(

09 cache_root =>

10 "$ENV{HOME}/.arpemail");

11

 12 my $events =

13 WatchLAN::Activity::Manager

14 ->get_activity(

15 with_objects => [

16 'device', 'ip_address'

17],

18 query =>

19 ["t2.name" => undef],

20 sort_by => ['minute'],

21);

22

 23 $events = [

24 grep {

25 my $mac =

26 $_->device()

27 ->mac_address();

28 !$cache->get($mac)

29 && ($cache->set($mac, 0)

30 || 1);

31 } @$events

32];

33

 34 exit 0 unless @$events;

35

 36 my $mailer =

37 new Mail::Mailer;

38 $mailer->open(

39 {

40 'From' => 'me@_foo.com',

41 'To' => 'oncall@_foo.com',

42 'Subject' =>

43 "*** New MAC detected ***",

44 }

45);

46

 47 my $t = Template->new();

48 $t->process(*DATA,

49 { events => $events },

50 $mailer)

51 or die $t->error();

52

 53 close($mailer);

54

 55 __DATA__

56 [% FOREACH e = events %]

57 When: [% e.minute %]

58 IP: [% e.ip_address.string %]

59 MAC: [% e.device.mac_address
%]

60

 61 [% END %]

Listing 5: arpemail

Perl: Monitoring MAC AddressesPROGRAMMING

74 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

advertisement

If the array referenced by $events ap-
pears to be empty, then the arpemail
surveillance script, which is called as a
regular Cronjob, will simply terminate.

In case there are new devices to be re-
ported, the alert message is formatted by
the template toolkit. The template that is
stored in the DATA section at the end of
the script is passed a reference to the
$events array and uses a FOREACH loop
to iterate over the entries. The template
toolkit's quirky but very practical syntax
enables us to call the $e->ip_address
()->string() method chain as e.ip_
address.string.

arpemail then uses the CPAN Mail::
Mailer module to connect to the local
mailer. It then mails the message to the
system administrator listed in the To
field in line 41.

What’s Been Going On?
To see which devices have visited your
LAN over the past 24 hours, the lastac-
cess script uses the CPAN DateTime
module to specify a point in time that
was exactly 24 hours ago.

The Rose manager then fires off an
SQL query that will return every single
event that has occurred since this point,

sorted by the event time rounded to min-
utes as stored in the minute column in
the database.

The %latest hash only stores the last
events for various MAC addresses;
lastaccess continually overwrites the
same MAC addresses with the latest val-
ues. It would be preferable to leave cal-
culations of this kind to the database,
however, the Rose object wrapper does
not support aggregation functions such
as MAX() with GROUP BY yet. Judging
by the current pace of development,
however, this feature might well have
been implemented by the time this issue
hits the news stands.

listaccess defines a time_diff function
in line 40 in order to calculate the
human-readable time difference between
the second values.

The text substitution in line 56 trans-
forms the plural time units to singular
units if the result is a single unit. The
output from lastaccess looks much like
Figure 1. You could extend the arpemail
script to set static IPs for specific devices
in the device table, following arpalert‘s
example ([4]), and send an alert whether
a device with a static IP is suddenly
using a different address.

As always, there simply are no bounds
to the developer’s ingenuity now that the
framework has been well established,
and fortunately, you will be able to ac-
cess the data in the database to your
heart's content. ■

[1] Listings for this article:
http:// www. linux-magazine. com/
Magazine/ Downloads/ 76/ Perl

[2] “Arp Watch” by Charly Kühnast Linux
Pro Magazine, December 2006, pg. 55

[3] “Perl: Traffic Control” by Michael
Schilli, Linux Pro Magazine, Decem-
ber 2004, http:// www. linux-magazine.
com/ issue/ 49

[4] The original Arpalert script:
http:// arpalert. org

INFO

01 #!/usr/bin/perl -w

02 use strict;

03 use WatchLAN;

04

 05 my $reachback =

06 DateTime->now(

07 time_zone => "local")

08 ->subtract(

09 minutes => 60 * 24);

10

 11 my $events =

12 WatchLAN::Activity::Manager

13 ->get_activity(

14 query => [

15 minute =>

16 { gt => $reachback },

17],

18 sort_by => ['minute'],

19);

20

 21 my %latest = ();

22

 23 for my $event (@$events) {

24 $latest{ $event->device_id()

25 } = $event;

26 }

27

 28 for my $id (keys %latest) {

29 my $event = $latest{$id};

30 my $name =

31 $event->device()->name();

32 $name ||=

33 "unknown (id=$id)";

34 printf "%23s: %s ago\n",

35 $name, time_diff(

36 $event->minute());

37 }

38

 39 #############################

40 sub time_diff {

41 #############################

42 my ($dt) = @_;

43

 44 my $duration =

45 DateTime->now(

46 time_zone => "local") -

47 $dt;

48

 49 for (

50 qw(hours minutes seconds))

51 {

52 if (my $n =

53 $duration->in_units($_))

54 {

55 my $unit = $_;

56 $unit =~ s/s$//

57 if $n == 1;

58 return "$n $unit";

59 }

60 }

61 }

Listing 6: lastaccess

Michael Schilli works
as a Software Devel-
oper at Yahoo!,
Sunnyvale, Califor-
nia. He wrote “Perl
Power” for Addison-
Wesley and can be
contacted at mschilli@perlmeister.
com. His homepage is at
http://perlmeister.com.

T
H

E
 A

U
T

H
O

R

Perl: Monitoring MAC AddressesPROGRAMMING

76 ISSUE 76 MARCH 2007 W W W. L I N U X- M A G A Z I N E . C O M

