
60

Journaling filesystems offer some
important benefits for the user,
but they also pose some subtle

problems. One problem is that the file-
system must keep a record that reflects

the state of write operations
to the storage device, but
the storage device may ac-
tually change the order of

those write requests in
an effort to optimize
performance. If the

system fails at a point where the journal
is out of step with the true sequence of
write operations, your data may not be
as safe as you think.

Filesystem developers and disk ven-
dors are well aware of this problem, and
a number of solutions and workarounds
have emerged. One brute-force solution
is simply to flush the write cache before
and after each write request, which ef-
fectively eliminates the write cache with-
out disabling it at the device level. A bet-
ter and faster solution that has gained
favor among developers is to ensure that
write requests are written to disk in a
predictable order using what is called a
write barrier request. Although write
barrier support is becoming much more
common, the question of whether you
can use write barriers – and whether
your journaling filesystem may already
be using write barriers – depends on
your filesystem, kernel version, and stor-
age device.

I experienced three filesystem
crashes within a week on my
IBM ThinkPad T23, which
uses XFS and kernel
2.6.16 with the
write buffer

activated [1]. The problems stopped
when I deactivated the write cache. The
funny thing was that previous kernels
had been stable with the write buffer.
Finally, I installed a new kernel 2.6.17,
and its write barrier functionality gave
me the stability I needed.

The rapid development and uneasy
integration of write barriers with kernel
versions, filesystem drivers, and storage
devices means that, if you ever trouble-
shoot a journaling filesystem, you’d bet-
ter start with some basic knowledge of
write barriers. This article explores the
intricacies of write barrier support.

How a Journaling
Filesystem Works
A journaling filesystem provides life in-
surance for your data by recording every
single change.

A data journaling (or full journaling)
filesystem guarantees the consistency of
the file contents (see the box titled “Data
Journaling”). This approach is

Your journaling filesystem is carefully tracking write operations –

but what happens when the data gets to the disk? A write barrier

request can help protect your data.

BY MARTIN STEIGERWALD

Working with write barriers and journaling filesystems

IMPOSING ORDER

Write BarriersSYSADMIN

60 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

Martin Steigerwald is a trainer, con-
sultant, and systems engineer with
team(ix) GmbH in Nürnberg, Ger-
many. Part of his job includes sec-
ond level customer support for
Linux business desktops owned by
team(ix) customers. He installed
Linux on his Amiga 4000 many
years ago, and he still uses Linux
whenever he can.

T
H

E
 A

U
T

H
O

R

S
cott M

axw
ell, Fotolia

61

very thorough, but typically at the cost
of performance.

A faster technique known as metadata
journaling guarantees the consistency of
your filesystem structure by simply mon-
itoring metadata information, such as
file and directory names, file sizes, per-
missions, and storage locations. The file-
system stores this information in special
blocks for administrative information
known as inodes.

If the filesystem is interrupted while
modifying the metadata, the metadata
can become inconsistent because most
changes comprise multiple steps, only
half of which may have been completed.
For example, when the filesystem creates
a new file, it needs to create a directory
entry, allocate storage space, write the

data, and remember where it stored
the file.

If an interruption happens,
the storage space for the
file may be occupied, al-
though the filesystem

may not have created
a directory entry at the
time of the interruption.

A filesystem without a
journal only knows that
it was not shut down cor-
rectly when you later re-

boot. A special program,
such as fsck, must check
whether the metadata is
intact, and if you have a
large filesystem with nu-

merous directories and files, this can be
a slow process.

In contrast to this, a journaling filesys-
tem writes the changes for a complete
operation, such as creating a file, to the
journal as a transaction (see Figure 1).
Transactions are atomic, that is, contigu-
ous operations that can have one of two
possible states: a transaction is either
complete or it did not happen at all. As-
suming the transaction is complete, the
filesystem will tag it in an invisible write
operation.

Journaling filesystems come with ei-
ther of two distinct storage formats. A
physical journal, like the one Ext3 uses,
fills complete blocks with metadata. The
Ext3 filesystem uses the Journal Block
Device (JBD) [2] to do this. A filesystem
with a logical journal like XFS, ReiserFS
3, or JFS, will store the metadata in its
own, more compact format.

If you remount a journaling filesystem
after an unexpected interruption to a
write operation, it will try to evaluate the

information in the journal to restore a
consistent state. If a transaction, like a
file creation, is still tagged as incomplete
in the journal, the filesystem will discard
the transaction.

The filesystem will process completed
transactions step by step, checking
which changes have been written out to
disk, and writing changes that have not
yet happened. The filesystem will not
tag the transaction as complete until all
changes are written to disk, at which
point the journal space is freed.

As the journaling filesystem only
needs to check the stored journal en-
tries, there is no need to check the whole
of the metadata structure, and this
means that the recovery process will not
take more than a few seconds under nor-
mal circumstances. If the filesystem is
again interrupted at some point during
the recovery process, the filesystem will
just continue with the last incomplete
transaction when everything return to
normal.

SYSADMINWrite Barriers

61ISSUE 78 MAY 2007W W W. L I N U X- M A G A Z I N E . C O M

Figure 1: The filesystem writes individual transactions, such as creating a file, successively to the journal. Transactions can have one of two

possible states: complete or not started. Completed transactions are tagged by a contiguous write operation.

Transaction 1

Add directory entry
Increase memory space

Add file

Transaction 2

Allocate memory space
Write data

Add more data

Transaction 3

Change directory entry

Rename file

START START STARTCOMMIT COMMIT COMMIT

Figure 2: You have no control over the write order if you have a write buffer [3].

Kernel

Disk

write Buffer

Platter

This approach does not guarantee that
all your changes will survive a crash,
however, it does ensure that the filesys-
tem structure will be consistent, if all the
write operations take place in the right
order. The filesystem starts by writing
the transaction to the journal. The file-
system then performs the metadata
changes and finally tags the transaction
as complete. If metadata changes reach
the disk before the journal entry, and the
process is then interrupted, the filesys-
tem will be unable to locate entries for
the changes in the journal during the re-
covery process. In this case, the filesys-
tem is obviously in an inconsistent state.

Transactions checked off as complete
before the metadata changes have been
written to disk can cause similar issues.
Thus, the filesystem has to ensure that
changes are always written in a specific
order. There is no guarantee that this
will happen if you have a hard disk with
a disk cache.

The hard disk will first cache any data
it needs to write into a temporary mem-
ory buffer that resides between the fast
RAM and the slow mechanical write

mechanisms of the distribution. The disk
firmware then decides in which order
to write the write buffer contents (see
Figure 2).

One approach for making sure a spe-
cific write order is kept involves the file-
system telling the driver to flush the
cache before and after writing a transac-
tion. The second approach involves the
filesystem using the kernel’s write bar-

rier functionality to arrange write opera-
tions in a specific order [4].

A barrier write request tells the Linux
block layer to keep to the following write
order for write operations: all write re-
quests prior to the barrier request are
processed normally; the barrier request
then follows; and following the barrier
request, all write requests are again pro-
cessed normally.

This approach has two distinct advan-
tages. There is no need for an immediate
cache flush; the cache flush can occur
directly prior to the barrier request. For
another thing, the driver can leave the
request order partly or entirely in the
hands of intelligent storage devices.

The kernel block layer distinguishes
between drives based on two criteria:
the request order, and the write buffer
type (see the Device Classes box). For
example, Forced Unit Access type drives

Write BarriersSYSADMIN

62 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

The write barrier functionality in the block
layer guarantees a specific order when
processing I/ O requests. Barrier requests
thus need to have two properties [3]:

Request Order

The following variants are possible:

• Devices with support for multiple
queued requests, and for sequenced
requests (TCQ devices) – such as mod-
ern SCSI controllers and drives. The
block layer passes the barrier request
on as a sequenced request. Low level
drivers, controllers, and drives are re-
sponsible for keeping to the correct
sequence. TCQ is the abbreviation for
Tagged Command Queueing, that is,
the ability of a drive to queue multiple
requests. This option is not currently
enabled on Linux as the SCSI subsys-
tem’s dispatch function on kernels up
to up 2.6.17 does not pass requests
atomically to the SCSI controller, and
this means that the request order may
change.

• Devices that support multiple queued
requests, but not sequenced requests
– this is typical of older SCSI control-
lers and drives, as well as SATA drives:
the block layer guarantees the correct
order.

• Devices that handle requests sequen-
tially – very old SCSI devices and IDE
drives; again, the block layer guaran-
tees the correct order.

Write Cache

The write cache configuration can fall in
any of the following cases:

• No write cache: it is sufficient to orga-
nize requests in the correct order.

• Writeback cache without cache flush-
ing: there can be no guarantee of the
correct write order and no support for
write barriers. You need to disable the
write cache on drives of this kind to
provide stable support for abnormal
termination on journaling filesystems.

• Write cache and cache flushing,
without Force Unit Accesses (FUA):
the block subsystem triggers a cache
flush before and after the barrier
request.

• Write cache, cache flushing, and
Forced Unit Access (FUA): the block
layer triggers a cache flush before the
barrier request. The barrier request
passes the flush on as an FUA request.
FUA stands for Forced Unit Access
and tells the drive to write the request
out to disk immediately and not use
the write cache while doing so.

Device Classes

Figure 3: The hdparm command tells you whether the write cache for a disk is enabled.

If you want to achieve higher speeds for
XFS metadata operations – especially
for deleting large numbers of directories
and files – you can mount the filesystem
with the logbufs=8 option to enable a
larger number of buffers for the journal
(default 2, max. 8) [7]

If you need to use kernel 2.6.17 with
XFS, you should use version 2.6.17.7 or
higher, as this version includes a fix for
XFS [10], [11], [12]. You can also install
the patch manually. Without the patch,
minor filesystem defects, which the cur-
rent version of xfs_repair may not be
able to repair, can occur. You’ll find a
patch for xfs_repair that apparently
solves this issue [13].

XFS Notes

do not need a cache flush after the bar-
rier request.

Enabling write barriers for a journal-
ing filesystem can improve stability and
performance – as long as your kernel
version, your hard disk and your filesys-
tem all offer write barrier support.

Practical Applications
The first thing you’ll need if you want
to use write barriers is a kernel that sup-
ports write barrier functionality. The
various journaling filesystems unveiled
write barrier support with different ker-
nel versions.

For XFS, you’ll need kernel version
2.6.16 or later (or preferably kernel ver-
sion 2.6.17.7 or later). There is a kernel
2.6.5 patch for Ext3 and ReiserFS 3, but
if you don’t have the patch, write barrier
support for Ext3 and ReiserFS 3 is offi-
cially available as of kernel version
2.6.9, however, kernel 2.6.16 still has a
number of changes and bug fixes for
write barriers. The XFS filesystem sup-
ports write barriers on version 2.6.15 or
later (see the Write Barrier History box).

Even if you have a recent kernel, it is a
good idea to check whether you can ac-

tually use write barriers with your com-
bination of kernel version, drivers, file-
system, controller, and drive.

A few things might help you find your
way here: IDE drives without write buf-
fers, IDE drives with cache flush, SCSI
drives without write buffers, SCSI drives
with cache flush, or SCSI drives with
cache flush and FUA (Forced Unit Ac-
cess) should support write barriers (see
the Device Classes box).

Write barriers should also work with
software RAID and MD/ RAID1, as long
as the controller and all the drives sup-
port cache flushing. Other RAID variants
are not supported as of this writing.

Write barrier functionality is enabled
by default for XFS as of kernel 2.6.17.
Reiser 4 uses write barriers if supported,
and synchronous write operations, that
is, direct cache flushes if not. JFS uses
only synchronous write operations. For
the other filesystems, and XFS prior to
2.6.17, you may need to specify a mount
option (see Table 1).

Write barrier support is evolving very
rapidly. If you are uncertain whether
your system supports write barriers, use
one of the mount options shown in Table

1 until you can determine the default
behavior.

A quick glance at the system protocol,
when mounting a filesystem with write
barrier functionality enabled, tells you
whether things have gone well. For ex-
ample, depending on the scenario, XFS
will give you one of three error messages
if things have not worked out [5]. The
Journal Block Device, which Ext3 uses,
tells you: JBD: barrier-based sync failed
on %s -- disabling barriers. The other
filesystems output similar messages.

The hdparm -I /dev/hda command
shows you whether the write cache is
active: Write cache below Command/
features (see Figure 3).

The hdparm -W0 /dev/hda command
disables the write cache, hdparm -W1
/dev/hda enables the cache, and hdparm
-I /dev/hda tells you the vendor’s default
setting in WriteCache.

System Support
On some systems, you can test

whether write barriers are supported by

SYSADMINWrite Barriers

63ISSUE 78 MAY 2007W W W. L I N U X- M A G A Z I N E . C O M

Journaling filesystems that only write
metadata to the journal have one draw-
back. If write operations are interrupted,
files can be trashed by incomplete write
operations [14]. The filesystem might
have allocated additional data blocks for
the file before completing the write oper-
ations in these blocks. Or a write opera-
tion designed to overwrite data in a file
may not have been completed.

A filesystem with data journaling re-
solves this by writing the data to the
journal first. If a crash occurs, the filesys-
tem uses the information in the journal
to restore a state where the metadata
matches the data in files, and individual
write operations are either complete or
have not taken place.

The Ext3, ReiserFS 3, and Reiser 4 file-
systems all support data journaling,
whereas XFS and JFS do not support it,
as of this writing.

Write operations are far slower if you
enable data journaling, and this is
understandable, as all write operations
actually take place twice. The data is
first written to the journal and then to
the final storage location on the disk.
Reiser 4 is the only filesystem to write

the data at the final location and to su-
perimpose a wandering journal over the
data [15].

The Ext3 and ReiserFS 3 filesystems
offer an interim solution that does with-
out data journaling: the filesystem writes
the data blocks for a metadata transac-
tion before entering the transaction in
the journal. This solution ensures that
newly allocated data blocks in a file will
always have valid data. However, a
partly finished operation that overwrites
data in a file will always lead to an incon-
sistent state.

Data journaling does not guarantee the
integrity of your application data if a
write process terminates abnormally.
This is why many database and server
programs, such as mail servers, have
their own mechanisms for guaranteeing
data integrity in case of a crash or power
outage. This kind of application-specific
data journaling is typically based on
writing data in a specific order, and it
typically relies on atomic write opera-
tions. Other programs, such as the KDE
PIM applications KAddressBook, Korga-
nizer, and Akkregator, create backups of
critical files.

Data Journaling

Journaling is not the only means for
guaranteeing filesystem integrity. Other
filesystems employ techniques such as:

• Soft updates – instead of duplicating
metadata in the journal, the filesys-
tem organizes write operations for
metadata in a way that guarantees
filesystem integrity at all times. This
technology, which was originally de-
vised for FreeBSD, is now available
for other BSD variants [16].

• Persistent write cache and an uninter-
ruptible power supply – the controller,
or driver, stores the data to be written
to disk in a non-volatile memory area.
In case of a crash, a backup power
supply gives the system enough time
to write the data out to disk. Various
RAID controllers and storage appli-
ances, like the Fabric Attached Stor-
age (FAS) appliance from Netapp,
which is also called Filer, use this
technology [17].

• Log-structured filesystems – The
whole filesystem is a journal – this re-
moves the need for duplicate writing
of data and metadata [18]. The UDF
DVD filesystem is an example of this.
Reiser 4 or WAFL (Write Anywhere
Layout), as used by the NetApp FAS
storage appliance, use a number of
log-structured techniques [15], [19].

Alternative Approaches

by mounting the filesystem via a loop
device. The last time I looked, write bar-
riers were not supported with loop de-
vices. Thus, if you attempt to mount the
filesystem via a loop device and you get
an error in syslog or dmesg, it may be
because your filesystem is attempting to
use write barriers.

Without write barrier functionality,
journaling filesystems simply keep their
own integrity in case of an unexpected
interruption, if the disk write cache is
switched off, or if the filesystem writes
transactions synchronously.

Drives with write buffers that do not
support cache flushing are by design in-
capable of supporting a specific order for
write requests. In that case, the only way
for users to achieve data safety with
journaling filesystems is to disable the
write buffer.

Controllers and drives with persistent
write buffers (NVRAM) do not typically

need write barrier support, since these
devices can write out data to disk even
after a crash or power outage. In fact,
write buffer support can sometimes in-
terfere with an NVRAM device. The XFS
FAQ even recommends disabling write
barriers for devices with persistent write
buffers [6].

Conclusion
Enabling write barriers solved the stabil-
ity problems I was having with XFS on
my notebook. The alternative of dis-
abling the write caches also helped, but
at least in theory, write barriers provide
better performance – especially for com-
plex write operations.

If you are using a journaling filesystem
and you want to experiment with write
barriers, first make sure you have a ver-
sion of the kernel that offers write bar-
rier support for your filesystem. If both
your kernel and your storage device sup-

port write barriers, you may find that
write barriers are enabled by default. If
you’re not sure, try the mount options
shown in Table 1. ■

Write BarriersSYSADMIN

64 ISSUE 78 MAY 2007 W W W. L I N U X- M A G A Z I N E . C O M

[1] Kernel Bug #6380: http://bugzilla.ker-
nel.org/show_bug.cgi?id=6380

[2] The Journaling Block Device:
http:// kerneltrap. org/ node/ 6741

[3] Diskio visualization:
http:// developer. osdl. jp/ projects/
doubt/ diskio/ documents/
2005-10-19-visualizing_diskio. pdf

[4] Tejun Heo, I/ O Barriers, Documen-
tation for Linux Kernel 2.6.17.1: block/
barriers.txt

[5] XFS FAQ, How can I address the
problem with the write cache?:
http:// oss. sgi. com/ projects/ xfs/ faq.
html#wcache_fix

[6] XFS FAQ, Should barriers be enabled
with storage which has a persistent
write cache?:
http:// oss. sgi. com/ projects/ xfs/ faq.
html#wcache_persistent

[7] Filesystem performance tweaking
with XFS on Linux: http:// everything2.
com/ index. pl?node_id=1479435

[8] Barrier Patch Set:
http:// lwn. net/ Articles/ 76540/

[9] Kernel Changelogs: http:// www.
kernel. org/ pub/ linux/ kernel/ v2. 6/

[10] XFS Corruption Fix:
http:// marc. theaimsgroup. com/ ?t=11
5315520200004&r=1&w=2

[11] Patch by Mandy Kirkconnell:
http:// bugzilla. kernel. org/ show_bug.
cgi?id=6757

[12] XFS FAQ, What is the issue with
directory corruption in Linux 2.6.17?:
http:// oss. sgi. com/ projects/ xfs/ faq.
html#dir2

[13] XFS Repair Fixes: http:// oss. sgi. com/
archives/ xfs/ 2006-07/ msg00374. html

[14] Advanced filesystem Implementor’s
Guide: http:// www. gentoo. org/ doc/
en/ articles/ l-afig-p8. xml

[15] Wandering journal in Reiser 4:
http:// en. wikipedia. org/ wiki/ Reiser4

[16] Soft updates: http:// en. wikipedia. org/
wiki/ Soft_updates

[17] Netapp: http:// www-uk. netapp. com/
index. html

[18] Log-structured file system:
http:// en. wikipedia. org/ wiki/
Log-structured_filesystem

[19] Write Anywhere File Layout:
http:// en. wikipedia. org/ wiki/ Write_
Anywhere_File_Layout

INFO

Functionality Ext3 ReiserFS3 Reiser 4 XFS JFS
Write Barrier barrier=1 barrier=flush Standard barrier –

(standard as
of 2.6.17)

No write Barrier barrier=0 barrier=none – nobarrier –
Data journaling ordered= ordered= Standard – –
 journal journal (wandering logs)
Data before ordered=data ordered=data – – –
metadata
Writeback ordered= ordered= – Standard Standard
mode writeback writeback behavior behavior

Table 1: Mount Options

Kernel Version Date Change
2.6.5 March 2004 First write barrier patchset. Supported filesystems: Ext3 and

ReiserFS 3 [8].
2.6.9 October 2004 Write barrier support for IDE, SCSI, MD, device mapper, Ext3,

ReiserFS is officially added to kernel.
2.6.10 December 2004 Fix for mount errors with barrier on SATA disks; fix for multiple

CPU support on various platforms (SGI Challenge, Origin, and
Altix).

2.6.12 June 2005 Write barrier support for DASD controllers (S/ 390).
2.6.13 August 2005 Fix for IO scheduler CFQ (Completely Fair Queueing) with barri-

ers (regression from 2.6.12); Device Mapper Multipath does not
support write barriers.

2.6.14 October 2005 MD/ RAID still does not support write barriers at this point.
2.6.15 Januar 2006 Write barrier support for XFS with MD/ RAID1.
2.6.15.4 Februar 2006 Sequenced write operations with cache flush for SCSI disabled.
2.6.16 March 2006 New implementation of barrier request handling IDE / SCSI:

will now complete barrier requests atomically or not at all;
FUA support (Forced Unit Access) for SCSI drives; write barrier
for XFS enabled by default, then disabled again due to I/ O
problems; update of barrier documentation[3]; Device Mapper
targets Snapshot and Origin do not support write barriers.

2.6.17 June 2006 Write Barrier for XFS enabled by default for MD/ RAID1;
improved detection when barrier support is missing Device
Mapper; fix for hang on barrier requests with MD/ RAID1.

Table 2: Write Barrier History

