
Rapid application development with Ruby and Glade

IN THE GLADE

ka
tika

tta
, p

h
oto

ca
se.co

m

For even the most experienced
developers, the drudgery of the
edit-compile-test cycle can be-

come very oppressive. Fortunately, an
assortment of open source tools cuts the
fat out of the development process by
helping programmers focus on function-
ality instead of on all the arbitrary imple-

mentation details.
With dynamic programming

languages and versatile inter-
face design utilities, even rela-
tively inexperienced program-
mers can build complex
applications with little ef-

fort. One promising combination of tools
is the Ruby language and the Glade in-
terface development system.

The versatile and expressive Ruby
language allows developers to make
programs that do more with less code.
Glade brings in the power of the Gtk
toolkit, letting you easily create a graphic
user interface for your Ruby application.

In this article, I will take you through
all the steps of building an application
with Ruby and Glade. You’ll watch Ruby
and Glade at work while we create an
example screenshot application called
Screenshooter.

Application development

shouldn’t be a chore. We’ll

show you how to simplify the

development process with the

Ruby programming language

and the Glade interface design

utility. BY RYAN PAUL

Ruby and GladePROGRAMMING

62

Ruby’s concise and expressive object-ori-
ented syntax is highly conducive to rapid
development. Well-written Ruby pro-
grams are easy to read, understand, and
maintain. A wide variety of useful pro-
gramming libraries are available for
Ruby, so Ruby is often used to tie to-
gether functionality from
disparate external sources.
Ruby’s scalability pro-
vides a graceful glide path
that makes it easy for sim-
ple command-line scripts
to evolve into graphical
utilities with menus, tool-
bars, and text boxes.

Glade is an interface
development system
based on the Gtk toolkit.
The Glade development
system consists of an in-
terface construction pro-
gram and a set of pro-
gramming libraries that
facilitate interface loading
and manipulation.

The Glade interface
builder, which supports
rapid point-and-click user
interface design, produces
simple XML interface de-
scription files. Developers
use the Glade program-
ming libraries to parse the
XML files and automati-
cally generate Gtk inter-
faces in memory at run time. The pro-
gram can then display and manipulate
these interfaces as if they were manually
coded with Gtk.

Glade provides several unique advan-
tages over other interface design tools.
Because Glade uses runtime loading in-
stead of code generation, it is language-
neutral, which means that individual

Glade files can be used with any pro-
gramming language for which Glade li-
brary bindings are available. Runtime
loading also makes testing less time in-
tensive, since one doesn’t need to per-
form any additional processing steps be-
tween modifying an interface and run-
ning the program in which it is used.

Getting Started with Glade
The Glade builder utility comprises four
floating windows. The project window
lists the forms associated with the cur-
rent project, the Palette window provides
access to all of the Gtk widgets and con-
trols accessible in Glade, the Properties
window displays various widget attri-
butes, and the widget tree window dis-
plays a nested hierarchy of all controls
used in the current project. When Glade
starts, all of the windows are either

empty or disabled until a project
is created.

To start a new project, select
New from the Project menu in
the project window (Figure 1).
When starting a new project,
users must choose between Gtk
and Gnome. Although Gnome
projects have access to a broader
selection of widgets, Gtk projects
are more portable and have
fewer dependencies. For this
tutorial, create a Gtk project.

After you create a new project,
the Palette window will become
accessible. The Palette window
(Figure 2) includes category and
widget buttons. Each category
contains a number of widgets
that can be included in Glade
programs. The user can switch
between categories by clicking
the category buttons. The Basic
category includes a variety of
widgets that are commonly used
in simple applications. The Addi-
tional category contains widgets
that are a bit more obscure, but
still frequently used. The Depre-

cated category includes widgets that are
no longer supported but are still occa-
sionally used by legacy applications. To
select a widget, click one of the widget
icon buttons in any category.

Creating the Layout
To build our sample screenshot tool, we
will start by designing the interface with

Glade, and then we will use Ruby to as-
sociate actions with program events.

To create a window for the screenshot
utility, select the window widget from
the Basic category on the palette. The
window widget button, which has an
icon that looks like a window, is the first
widget button in the Basic category.
When you click the window widget but-
ton, a new window will appear immedi-
ately and the Properties window (Figure
3) will display the new window’s attri-
butes. The new window, which will be
called Window1 by default, will be listed
automatically in the project window and
widget tree. When new Glade windows
are created, they are drawn with a cross-
hatch background to indicate that they
are empty.

The first item in the properties win-
dow is the widget name. Ruby programs
that load Glade user interfaces can ac-
cess and manipulate individual widgets
within the user interface by referring to
widget names. As a result, it is important
to specify meaningful names for widgets
that the program will need to manipu-
late. To change the value of the Name
property, simply type a new name into
the Name property text box. For the
screenshot utility, set the window Name
property to screenshotWindow. The Title

Figure 1: The project window lists all of the

top-level windows and dialogs included in the

current Glade project.

Figure 2: The Pal-

ette window pro-

vides access to all

of the widgets and

components that

you can include in

Glade projects.

Figure 3: The Properties window allows

developers to customize widget attributes.

PROGRAMMINGRuby and Glade

63ISSUE 79 JUNE 2007W W W. L I N U X- M A G A Z I N E . C O M

property is used to specify the text that
will appear in the title bar of a window.
For this example, change the value of the
Title property to Screenshot Utility. Al-
though many other window properties
are available, in this article, I will only
describe the properties that are relevant
for the sample application. Users can get
additional information about other wid-
get properties by referring to the Gtk
documentation.

In Gtk applications, widgets are
stacked in nestable vertical, horizontal,
and grid boxes. This approach to layout
is referred to as the box model. To deter-
mine what kind of boxes should be used,
one must first consider the structure of
the application’s user interface. The
screenshot utility has a menubar, a tool-
bar, a file selection widget, and a pre-
view pane. The widgets will be stacked
vertically, and the preview pane will
have to grow when the user resizes the
window. To accommodate that layout,
the screenshot utility will use a vertical
box with four rows.

To add a vertical box to the window,
select the vertical box widget from the
Basic category of the Glade palette. The
vertical box button, which has an icon
with three stacked rectangles, is in the
bottom half of the Basic palette. After
you click the vertical box button, click
anywhere inside the empty screenshot
utility window. A dialog will appear to
ask how many rows Glade should in-
clude in the box. Increase the number
to four, since the screenshot utility will

have four major
widgets.

After you add
the vertical box,
the blank space
in the screenshot
utility window
will be partitioned
into four separate
rectangles, and the
widget tree win-
dow list will in-
clude the vertical
box. When you
add the vertical
box to the win-
dow, the Proper-
ties dialog will
change to show
the properties of
the new box wid-

get. Vertical boxes have fewer properties
than windows.

To add or remove rows from the verti-
cal box, you can use the Size property,
and to set the amount of blank space
that the application should render be-
tween each row, you can use the Spacing
property. To modify the properties of the
window again, select the window in the
widget tree. You can use the widget tree
to select and manipulate any widget in
the current program.

Creating the Menubar
The menubar belongs in the first row of
the vertical box. Select the menubar wid-
get from the Basic category of the Glade
palette. The menubar widget button is
the second one in the first row of the
Basic category, right after the window
widget button. Next, click inside the top
row of the vertical box. A default menu-
bar will appear, with File, Edit, View,
and Help menus. You will have to mod-
ify the menus to serve the needs of the
screenshot utility program, so right-click
the menubar and select Edit Menus from
the right-click context menu to open up
the Menu Editor (Figure 4). The left side
of the Menu Editor is dominated by the
menu item tree, which lists all of the
menus and menu items on the active
menubar. The right side of the Menu Ed-
itor shows the properties of the selected
menu item and provides buttons for add-
ing and removing menu items.

Before you can add the proper menu
items, you have to delete the current

ones. Select the very first item in the
menu item tree and then hold down the
Delete key on the keyboard or click the
Delete button until all the menu items
are gone. Now click the Add button to
create a new menu. When the new
menu item is added, it will be selected
by default and its properties will be con-
figurable with the controls on the right
side of the Menu Editor.

You can use the Label property to set
the text that will be visible on the menu
to the user. The first item on our menu-
bar will be the Screenshot menu, so type
Screenshot into the Label text box. In
many programs, each menu item has
one underlined letter to indicate what
the user can press in conjunction with
the Alt key to activate the menu item.
Gtk handles that keyboard functionality
automatically, and you can use an un-
derscore in widget labels to specify
which key Gtk should be associated with
the menu item. Type an underscore right
before the S in Screenshot to make it so
that users can hold the Alt key and hit
S to activate the Screenshot menu. Gtk
always uses the letter that immediately
follows the underscore for keyboard
menu selection.

To bind a function to the menu selec-
tion event, you can use the Handler
property of menu items. The value of the
Handler property is the name of the
method that the application will invoke
in the source code when the user selects
the menu item. Because Settings is a
menu and not a menu item, the Handler
property should be empty. Delete the

Figure 4: The menu editor allows developers to customize application

menus.

Figure 5: The signal selection dialog is used

to select an event signal to bind to a handler.

Ruby and GladePROGRAMMING

64 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

text in the Handler text box for the
Image menu.

Next, we will add menu items to the
Screenshot menu. Select the Screenshot
item in the menu item tree and then
click Add Child to add a new menu item.
This new menu item will enable users to
initiate the screenshot capture. Set the
value of the Label property to _Capture
and set the Handler to on_capture. When
you write the source code for the screen-
shot utility, you will implement the on_
capture instance method to perform the
actual screenshot capture. Because users
will probably use the capture feature fre-
quently, it should have an accelerator.
Accelerators are the keyboard shortcuts
used to activate menu items. Select Cap-
ture in the menu item tree and click the
Ctrl checkbox in the Accelerator property
group in the bottom right corner of the
Menu Editor. Then, type the letter c in
the Key text box.

Now click the Add button to add the
next menu item. This menu item will
allow the user to save the captured
screen image. Next, set the value of the
Label property to _Save, the value of the
Handler property to on_save, and the ac-
celerator to Ctrl+s. To make the save
icon appear on the menu item, select
gtk-save for the Icon property value. The
last item on the Screenshot menu will
allow the user to quit the program. Click
the Add button, set the label to _Quit,
the Handler to on_quit, and the icon to
gtk-quit.

The screenshot utility will also have a
Settings menu. Click the Add button to
add a new menu item. If you click the
Add button while the Quit menu item is
selected in the menu item tree, Glade
will add the new item after Quit on the
Screenshot menu. To make the new item
a top-level menu rather than an item on
the Screenshot menu, click the left arrow
button below the menu item tree. Keep
in mind that Add Child will add a new
submenu to the selected item, whereas
Add will create a new item at the current
level. Now set the Label to Se_ttings and
clear the Handler value. The items on
the Settings menu will allow the user to
configure the behavior of the program.
Instead of using handlers, the Settings
menu items will have checkboxes that
the user can toggle. The state of those
checkboxes will be used at run time to
determine how the program operates.

To add the first Settings menu item,
click the Add Child button. This menu
item will allow the user to configure
whether or not the program should beep
after it successfully completes a screen
capture. Set the label to _Suppress Beep
and clear the handler.

To make this menu item a checkbox,
select Check in the Item Type property
group. To make the program suppress
the beep by default, set the Active toggle
property to Yes. Because the program
will access the value of the checkbox at
run time, the Suppress Beep menu item
needs to have a meaningful value for the
Name property. Set the Name property
of the Suppress Beep menu item to
checkSuppressBeep.

To create another menu item that will
allow the user to configure whether
screen captures of single windows
should include window borders, click
the Add button, set the Label to Show
_Frame, and clear the handler. To ensure
that screen captures will include win-
dow borders by default, set the Item
Type to Check and make sure that the
value of the Active property is Yes. Then,
set the value of the Name property to
checkShowFrame. When you finish creat-
ing the menus, click OK.

Creating the Toolbar
Now it is time to add a toolbar to the
vertical box. Select the toolbar widget
from the Basic category of the palette. It
can be found to the right of the menu
widget button. Now click inside of the
second partition of the vertical box, right
below the menu. Glade will display a di-
alog box that asks how many items you

want to include on the toolbar. Our tool-
bar will have three buttons that perform
the same operations as the items on the
Screenshot menu, so set the value to 3
and click OK. When the toolbar is
added, it will contain three empty boxes
with the same crosshatch background as
the empty portions of the vertical box.
Many Gtk widgets that can be placed in
a window can also be placed in a tool-
bar, but in this case, we will use toolbar
buttons, so select the toolbar button
widget from the Basic category of the
Palette window. It’s the first icon on the
second row of the palette, right below
the window widget icon. Now click the
first empty slot in the toolbar to create a
new toolbar button. Repeat this process
two more times to fill in the rest of the
empty slots.

Next we have to set the proper attri-
butes for the new toolbar buttons. Click
the first toolbar button in the screenshot
utility window and then select the Wid-
get tab of the Properties window. This
button will perform the capture func-
tion. Set the value of the Label property
to Capture and then select an icon for
the Icon property. I used the gtk-new
icon because I couldn’t find one that
seemed more relevant. Now you have to
associate that button with the capture
method. With the first toolbar button se-
lected in the screenshot utility window,
select the Signals tab.

In Gtk, signals are messages that are
emitted when an event transpires. In this
case, we want the program to call the
on_capture method when the user clicks
the toolbar button, so we have to hook
the button’s click event. To open up the
signal selection dialog, click the small
button to the right of the Signal text box
(Figure 5). The signal selection dialog
lists all of the signals that can be emitted
by the selected widget, including signals
inherited from other widgets. Select the
clicked signal and click the OK button.
The signal name now appears in the Sig-
nal property text box. Because the Cap-
ture button will do the same thing as the
Capture menu item, they should both
trigger the same handler: the on_capture
method. Set the Handler property value
to on_capture and then click the Add
button in the Properties window.

Select the second toolbar button in the
screenshot utility window. Because this
button is associated with the save func-

Figure 6: The completed screenshot utility

interface is ready for inclusion in a Ruby

program.

PROGRAMMINGRuby and Glade

65ISSUE 79 JUNE 2007W W W. L I N U X- M A G A Z I N E . C O M

tion, which is commonly used, you can
use Gtk’s stock button feature instead
of manually setting the label and icon.

Select Save from the Stock Button
property combo box in the Properties
dialog. Now click the Signal tab and as-
sociate the on_save handler with the
clicked signal. To enable the last button
to allow users to quit the program, set its
Stock Button property value to Quit and
then associate the on_quit handler with
its clicked signal.

Adding the File Chooser
The menubar and toolbar are now fin-
ished and the user interface for the
screenshot utility is almost complete.
The user needs a way to specify what
file name to use when a screenshot is
saved. The program could use a conven-
tional save dialog, but I think it’s more
convenient to integrate the save feature
directly into the application window in
this case. Select the file chooser widget
from the Additional category of the Pal-
ette window. The file chooser widget
icon is a folder inside of a white box,
and it is positioned at the far left of the
third row from the bottom of the Addi-
tional category. After you select the file
chooser widget, click the first of the two
remaining empty spaces in the screen-

shot utility window. The file
chooser’s target file will have
to be accessed in the on_save
method, so the file chooser wid-
get will need a name that you
can remember. Set its name to
fileChooser. By default, the new
file chooser widget behaves like
the Gtk dialog used to open a
file. To make it behave like a
Save dialog, change the value of
the Action property to Save.

The Local Only property indi-
cates whether or not the file
chooser widget will be able to
access remote locations. I fre-
quently use screenshots to show
Linux programs to my friends,
so I want to be able to save my
screenshots directly to my web server
using the ftp protocol. To make this pos-
sible, the screenshot utility will have to
leverage Gnome’s virtual filesystem
layer, which is capable of reading and
writing remote files with several proto-
cols, including ftp, SSH, and SMB. Set
the value of the file chooser widget’s
Local Only property to No for the ability
to navigate to remote locations.

The one thing that annoys me the
most about Gnome’s built-in screenshot
utility is the small preview size. When I

preview a screenshot, I want to see more
than just a thumbnail, so this custom
screenshot utility will include support
for full-size previews with scrolling.
Some Gtk widgets already include sup-
port for scrollbars, but for other widgets,
scrollbars have to be added separately
with a Gtk viewport widget. In this case,
a viewport is required.

To select the viewport widget from the
Additional category of the Palette win-
dow, click on the first icon on the last
line of the Additional category. Now

01 #!/usr/bin/env ruby

02

03 # Load the required libraries

04 require "RMagick"

05 require "libglade2"

06 require "gnomevfs"

07

08 # Initialize the Gtk toolkit

09 Gtk.init

10 # Specify the location of
temporary capture

11 $capture_file = File.
join(ENV["HOME"], ".screen_
capture.png")

12 # Specify the location of the
glade interface file

13 $glade_file = File.join(File.
dirname(__FILE__),
"screenshooter.glade")

14

15 def on_quit

16 # Quit the program

17 Gtk.main_quit

18 end

19

20 def on_capture

21 # Capture a screenshot and
save it to disk at the
location specified by
$capture_file

22 Magick::Image.capture($glade
["checkBeep"].active?,
$glade["checkFrame"].active?).
write($capture_file)

23 # Load the captured
screenshot into the image
preview pane

24 $glade["imagePreview"].file
= $capture_file

25 end

26

27 def on_save

28 # open the file
non-exclusively, in write mode

29 f = GnomeVFS::File.new($glad
e["fileChooser"].uri, 2,
false)

30 # write the contents of the
temporary capture file to
target

31 f.write(File.open($capture_
file).read)

32 # close the target file

33 f.close

34 end

35

36 # Load the Glade file

37 $glade = GladeXML.new($glade_
file) {|h| method(h)}

38

39 # Start the main loop

40 Gtk.main

Listing 1: screenshooter.rb

Figure 7: The Project Options dialog allows users to

choose a target directory and file name for Glade

projects.

Ruby and GladePROGRAMMING

66 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

click inside of the last empty space at the
bottom of the screenshot utility window.
Scrollbars will appear on the bottom and
right edges of the empty space. By de-
fault, scrollbars are always shown. To
make it so that the scrollbars only ap-
pear when they are needed, set the view-
port widget’s H Policy and V Policy prop-
erties to Automatic. Now you have to
add the image widget to the viewport by
selecting the image widget icon, a small

house with green grass and blue sky,
from the Basic category of the Palette
window. Now click inside of the remain-
ing empty space to place the image wid-
get. The contents of the image widget
will be manipulated in the program’s
source code, so it needs a meaningful
name. Set the value of its Name property
to imagePreview.

To make sure that the program termi-
nates when the user closes the window,
you have to associate a handler with the
window’s destroy event. To do this, se-
lect the screenshotWindow item in the
widget tree, navigate to the Signals tab,
and click the button with three dots to
the right of the Signal text box. Then, se-
lect the destroy signal in the Select Signal
dialog window, and click the OK button.
Next, type on_quit in the Handler text
box and click the Add button. Now the
program will invoke the on_quit method
when the user closes the window.

Saving the Glade project
Before you can use the interface in a
Ruby script, you must save the Glade
project. To save the project, select Save

from the Project menu of the Glade proj-
ect window. In the Project Options dia-
log window (Figure 7), select the direc-
tory in which you will store your Glade
project and then enter Screenshooter into
the Project Name text box. Because most
of the rest of the options in the Project
Options dialog window relate to depre-
cated code generation features, you can
safely ignore them and click the OK but-
ton to save your project. Glade will gen-
erate a .glade file, which contains the
XML data for the user interface. Glade
will also generate a .gladep file, which
stores other project information.

From Interface to App
To transform the Glade interface file into
a fully functional Ruby application, you
must create a simple Ruby script that
loads the Glade file, displays the win-
dow, and associates various interface
events with application functionality.

Start by creating a file called screen-
shooter.rb in your favorite text editor
(Listing 1). Save the file in the same di-
rectory as the screenshooter.glade file.
The script starts with a shebang (#!)

Figure 8: The fully operational screenshot

utility is useful despite its simplicity.

Advertisement

PROGRAMMINGRuby and Glade

line, which specifies which interpreter
the system should use to run the pro-
gram. After the shebang line, the script
uses the require keyword to load the
Ruby libraries employed by the script.
In this case, we will use the RMagick li-
brary to capture the screenshot, the lib-
glade2 library to handle the Glade user
interface file, and the gnomevfs library
to provide support for network transpar-
ent file access. After loading libglade2,
the script has to initialize the underlying
Gtk infrastructure, which is done with
the Gtk.init.

When the program captures a screen-
shot, it will have to store the image file
in a temporary location. For the sake of
convenience, I save the file in the user’s
home directory as .screen_capture.png.
After initializing Gtk, the script assigns
the path of the temporary storage loca-
tion to the $capture_file variable, done
with the File.join method and the HOME
environment variable. The File.join
method uses the proper directory separa-
tor (“/ ” on a Linux system) to combine
file and directory paths. ENV["HOME"]
provides the full path of the user’s home
directory. When I run the program on
my computer, the value of the $capture_
file variable is /home/segphault/.screen_
capture.png.

After assigning the proper value to the
$capture_file variable, the program has
to specify the location of the Glade user
interface file. The File.join method is
used again, this time with the File.dir-
name method and the name of the Glade
file (screenshooter.glade).

Methods
Now we have to implement the on_quit,
on_capture, and on_save methods. These
methods must be defined before the Gla-
deXML.new invocation, which binds
those methods to signals.

The on_quit method contains only one
method call, Gtk.main_quit, which ter-
minates Gtk’s main loop and ends the
program. If we wanted to make the pro-
gram pop up a dialog box to request
clarification before exiting, we could do
so here. This method is called when the
program’s window is closed, when the
Quit toolbar button is pressed, or when
Quit is selected from the utility’s Screen-
shot menu.

The on_capture method is a bit more
complex. The first line of the method

uses the Magick::Image.capture method
to capture the screenshot and then uses
the write method to save the screenshot
to the temporary file described in the
$capture_file variable.

The second line loads the captured
screenshot into the utility’s image
preview pane. The Image.capture
method of the Magick module receives
two parameters, which specify whether
or not the program should beep after
taking the picture and whether or not
the frame of a selected window should
be included in a screenshot.

To determine whether the checkboxes
on the Settings menu are checked, we
have to retrieve those widgets from the
Glade object stored in the $glade vari-
able and then use the active? method
to determine the state of the checkbox.

To retrieve a widget from a Glade
object, you can use square brackets.
For example, to retrieve the checkFrame
checkbox, you would use $glade
["checkFrame"]. In the on_capture
method, I also call the active? method
on the checkFrame widget after I re-
trieve it from the Glade object: $glade
["checkFrame"].active?. I do this for
both the checkFrame setting and the
checkBeep setting and provide the
returned values, booleans, to the Image.
capture method as parameters.

The last line of the on_capture method
retrieves the imagePreview widget from
the Glade object stored in $glade and
then associates its file property with the
file name stored in the $capture_file
variable.

The on_save method saves the cap-
tured image to a location specified by
the user with the integrated file chooser
widget. It also uses the Gnome virtual
filesystem layer to provide support for
network transparent file access, which
enables users to save files to remote lo-
cations with several protocols, including
ftp and SMB.

The GnomeVFS::File.new method
opens a file at the specified location for
reading or writing. The first parameter
sent to the GnomeVFS::File.new method
is the full path of the file to open, which

is taken from the fileChooser widget’s
URI property. The second parameter de-
termines whether the file is opened in
read mode or write mode. In this case,
we use 2, which indicates write mode.

The third parameter of the Gnom-
eVFS::File.new invocation specifies
whether or not the program is permitted
to overwrite existing files. In this pro-
gram, I use false as the value for the
third parameter to indicate that existing
files can be overwritten.

The second line in the on_save
method opens and reads the file de-
scribed in the $capture_file variable and
writes it to the new file created by the
GnomeVFS::File.new invocation. The
final line in the on_save method closes
the new file.

Because we used GnomeVFS rather
than Ruby’s built-in file methods for sav-
ing the image file to the target location,
users can save the files to remote servers
or other computers on the local network.
To take advantage of this functionality, a
Gnome user must first connect to a re-
mote location by selecting Connect to
Server from Gnome’s Places menu. If the
user mounts a remote location with the
Connect to Server dialog, it will be acces-
sible in the file chooser component in
the screenshot utility.

Running the Utility
Now that the screenshot utility is com-
plete, it is time to put it to the test. To
run the utility, change the permissions
of the Ruby script so that it is executable
and then run it like a regular shell script
(Listing 2). The entire utility, which
is only about 20 lines of code, has more
functionality than Gnome’s built-in
screenshot feature. With Ruby and
Glade, developers can produce effective
applications and utilities with less effort
and greater efficiency. Best of all, devel-
oping with Ruby and Glade completely
obviates the need for compilation. The
program can be executed immediately
after modification and no other interme-
diate step is necessary.

Glade comes with several additional
widgets that I did not discuss in this arti-
cle. You can experiment with different
tools on the Glade palette to learn more
about the capabilities of Glade. You can
also refer to the Gnome development
documentation to learn more about
specific widgets. ■

01 $ chmod +x screenshooter.rb

02 $./screenshooter.rb

Listing 2: Running
the Utility

Ruby and GladePROGRAMMING

68 ISSUE 79 JUNE 2007 W W W. L I N U X- M A G A Z I N E . C O M

