
66

Load sharing technologies often
rely on a central system or appli-
cation that distributes the work

evenly over the members of the cluster.
The Linux Virtual Server [1] project im-
plements this on Linux. To avoid a single
point of failure, the central instances
should be highly available and continu-
ously monitored by a routine that checks
the systems and responds to errors or
lost signals. If you prefer to avoid a cen-
tral load sharing instance entirely, the
iptables CLUSTERIP target is an alterna-
tive. CLUSTERIP is a simple and inex-
pensive technique for load sharing that
is already part of the Netfilter code, and
although this feature is not entirely sta-
ble, the technology is quite impressive.

In CLUSTERIP, the cluster nodes share
a common address, and each node uses
a hash algorithm to decide whether it is
responsible for a connection. Admins

can assign responsibilities to a node via
/proc/net/ipt_CLUSTERIP, influencing
load sharing, or switching interactively
or by means of dynamic scripting. Stone-
soft [2] products have had this function-
ality for a while, and it works well.

Iptables clusters do not have a built-in
heartbeat mechanism to check the
health state of the nodes, remove broken
systems from the cluster, or tell other
nodes to take over the load of the failed
system. Many failures are heralded by
tell-tale signs, however, that give the ail-
ing node the ability to voluntarily leave
the cluster in good time. In this article,
I show the possibilities of combining the
CLUSTERIP target of iptables with a
script controlling the cluster.

Cluster Example
The cluster shown in Figure 1 is made
up of two nodes. Each node has an inter-

face on the LAN (eth0) and another in-
terface on the management network
(eth1). The nodes use the second inter-
face to exchange messages. A simple
crossover cable is all you need for a two-
node cluster. Each interface has an addi-
tional virtual cluster address on the
LAN; it is this address that clients use to
talk to the cluster. Each node autono-
mously decides whether it is responsible
for a connection; of course, it needs to
see the packet first to be able to do this.

To allow this to happen, the cluster
has a shared IP address and a shared
MAC address, which is the same for all
nodes. This only works with multicast
MAC addresses, which are identifiable in
that the low-order bit in the higher order
byte is set. The multicast address pre-
vents address conflicts.

This approach has one drawback,
however: RFC 1812 [3] states that a
router should not trust an ARP (Address
Resolution Protocol) reply if it assigns a
multicast or broadcast MAC address as
the IP address. Routers that strictly ob-
serve the RFC will need a static entry in
their ARP tables.

Network Wizardry
Switches normally forward any incom-
ing multicast packets to all interfaces.
This can cause considerable confusion in
the case of high-availability (HA) archi-
tectures with HSRP routers or with two
switches, as in this example.

Switch 1, which is active, accepts
the packet off the LAN and passes it on
to the nodes, as well as to the second
switch, to make sure that node 2 also
receives the packet. Of course, switch 2
would normally pass the packet on to
node 2 and back to the first switch.
Some older switches do fall into this
trap, and the LAN comes to a halt.

Iptables gives admins the ability to set up clusters and distribute the

load. But what about failover? BY MICHAEL SCHWARTZKOPFF

Load balancing and high-availability clusters with iptables

STRENGTH IN
NUMBERS

Mode Approach
sourceip Only uses the source IP
 address for the hash and
 thus assigns exactly one
 node to each client.
sourceip- Additionally uses informa-
sourceport tion about the application’s
 source port. This enhances
 load distribution between
 nodes.
sourceip- Additionally uses informa-
sourceport- tion about the application’s
destport destination port.

Table 1: Cluster Modes

CLUSTERIPSYSADMIN

66 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

67

If a switch cannot learn multicast ad-
dresses by means of the normal mecha-
nism, its configuration has to specify the
incoming and outgoing ports responsible
for multicast packets to make sure the
switch forwards each packet exactly
once to the LAN interface of each node.
If both nodes of the cluster listen on in-
terface 1 and 2, the command for Cisco
switches would be:

mac-address-table static U
01:02:03:04:05:06 interface U
FastEthernet0/1 FastEthernet0/2

In high-available scenarios with double
switches (one for each node), the span-
ning tree protocol can help to prevent
loops on the path to the target.

CLUSTERIP Target
The cluster has to pass all the packets
that belong to a specific connection to
the same node. This method is the only
way to prevent clients from receiving
duplicate responses, or servers from
discarding packets because they are not
aware of the connection’s history.

The cluster software in the Netfilter
packet does this autonomously in an
elegant way. At the configuration phase,
each cluster is given a serial number;
these are the numbers 1 and 2 in this ex-
ample. For each connection, the iptables
target uses Bob Jenkins’ approach [4]
to calculate a hash from the connection
data and maps this to a range of 1
through 2 to discover whether the node
is responsible for the connection.

The connection status (Netfilter’s con-
nection tracking function) makes sure
that the connection stays assigned to the
node. The type of data used by the hash
mechanism depends on the cluster mode
(see Table 1). As a test, I only want the
cluster to respond to ICMP echo re-
quests; in this context, sourceip is the
only meaningful cluster mode setting –

ICMP packets do not have a port num-
ber. sourceip-sourceport would be prefer-
able for application clusters such as web
server farms.

Cluster Configuration
The cluster configuration consists of a
single iptables command per node. Table
2 explains the options. The following ex-
ample restricts the cluster to ICMP echo
requests (ping):

iptables -I INPUT -d U
192.168.10.3 U
-p icmp --icmp-type U
echo-request U
-j CLUSTERIP --new U
--hashmode sourceip U
--clustermac 01:02:03:04:05:06 U
--total-nodes 2 --local-node 1

The configuration for node 2 is almost
identical; however, in this case, I need a
value of 2 for --local--node.

From the outside (ifconf output), you
can’t tell that the interfaces belong to
the cluster, and the kernel does not
know that it has to react to the cluster’s
IP address. The best way to change this
is to use an ip command:

ip address add U
192.168.10.3/24 dev eth0

This command adds the cluster address
as an extra IP for this interface. The clus-
ter will respond to pings after doing so.
If you are wondering what happened to
the multicast MAC address, iptables
takes care of this automatically.

The hash value for this computer –
that is, the number the computer
responds to – is stored in /proc/net/ipt_
CLUSTERIP/192.168.10.3. This number

can be modified at run time to make
node 2 responsible for node 1:

echo "+1" > U
/proc/net/ipt_CLUSTERIP/U
192.168.10.3

Running this command on node 2 means
that the cluster will respond to each ping
with two echo reply packets. /proc/net/
ipt_CLUSTERIP/192.168.10.3 on com-
puter 2 now reads 1,2. echo "-1"... re-
moves responsibility for the hash value
of 1. This allows admins to switch the
node off and assign responsibility for
connections to the second computer.

Failover
A script that automatically manages
node responsibilities has to:
• initialize the cluster;
• check the node for errors,
• in case of error, remove the node from

the cluster while delegating responsi-
bility to the other nodes; and

• recheck the node and move it back
into the cluster if applicable.

The Bash script in Listing 1 covers these
tasks, but the script is only a demonstra-
tion. The configuration section (lines
3–11) groups the settings for the nodes
and the cluster. Following this, line 31
loads the ipt_conntrack kernel module.

The interface is then assigned the clus-
ter address, and the INPUT chain is de-
leted for security reasons (line 33) before
the call to iptables in the next line sets
up the cluster. The infinite loop in lines
40 through 56 checks to see that the
cluster interface is in up mode (with the
check_node function in line 13). If not,
failover (line 18) deletes the interface’s
IP address, takes responsibility away
from the local node, and uses SSH to

Figure 1: Two-node cluster. The LAN interfaces of all nodes are bonded to create a virtual

cluster interface; the two nodes use a management network to talk to and control each other.

IP: 192.168.10.2
MAC: Default

IP: 192.168.10.1
MAC: Default

192.168.10.0/24
LAN

Cluster
IP: 192.168.10.3

MAC: 01:02:03:04:05:06
IP: 192.168.10.3
Cluster

MAC: 01:02:03:04:05:06

192.168.20.0/24
Network Management

Node 2Node 1

IP: 192.168.20.1 IP: 192.168.20.2

Workgroup Switch

Catalyst

Workgroup Switch

Catalyst
Workgroup Switch

Catalyst

Switch Function
-d IP address of the cluster
 on the LAN
-i LAN interface
--hashmode Hash mode
--clustermac Cluster MAC address
--total-nodes Total number of nodes
 in the cluster
--local-node Node to configure

Table 2: Options

SYSADMINCLUSTERIP

67ISSUE 81 AUGUST 2007W W W. L I N U X- M A G A Z I N E . C O M

assign it to the other nodes. To allow
this to happen, the nodes need the
ability to use SSH to access each other
without user interaction.

If the interface recovers from the error
and comes back online, recover() (in line
24) restores the original configuration.
The script does not take all possible sce-
narios into account. For example, the
management interface might report a
problem that affects communications be-
tween the nodes (split brain). This case
has no effect as long as no other prob-
lems occur, because each of the nodes
would go on working autonomously;
however, things will go wrong on fail-
over. Half of the communications would
remain unanswered. A backup manage-
ment interface (via a serial port or the
LAN interface) would help to handle the
situation.

Nodes in a production HA setup
would need to monitor each other’s
health state, or one node might die with-
out being able to warn the others (e.g.,
power supply failure). This would lead
to another split brain situation, in which

the nodes could not talk but still had
network access. From the High-Avail-
ability Linux project (Linux-HA) [5], a
fencing mechanism can handle this.

And Much More …
The author is considering rewriting the
cluster script in C to remove the need for
UDP-socket-based communications be-
tween the nodes, to support more than
two nodes, and to standardize the con-
figuration. At the same time, tests could
take parameters such as CPU load, disk
space, the ability to reach external sys-
tems, or the application status into con-
sideration. It also seems to make sense
to let Linux-HA manage the cluster con-
figuration as a resource and thus com-
bine the benefits of HA and load sharing.

CLUSTERIP technology is also suitable
for farms of high-available application
servers, which could be implemented
without the use of central load sharing.
CLUSTERIP load sharing just goes to
prove that a simple but cleverly used
hash mechanism can work wonders.
The Linux-HA project also provides the

framework within which this concept
could be added as a resource. Supervi-
sion of the health of the nodes, like ping
external systems, hardware health, or
fencing in case of problems are done by
the heartbeat software, as well as the
failover transferring a resource from a
failed node to an active one.

My next article will describe utilizing
the CLUSTERIP target of iptables in a re-
source agent of Linux-HA, thus creating
a load-sharing cluster with up to 16
nodes, using plain Linux software. ■

01 #!/bin/bash

02

03 # Node configuration

04 MYNODE=1

05 DEVICE=eth0

06 OTHERNODE=192.168.20.2

07

08 # Cluster configuration

09 CLUSTERIP=192.168.10.3

10 CLUSTERMAC=01:02:03:04:05:06

11 ONLINE=0

12

13 check_node () {

14 ip link list dev $DEVICE |
grep -q UP

15 return $?

16 }

17

18 failover () {

19 ip address delete
$CLUSTERIP/24 dev $DEVICE

20 echo "-$MYNODE" > /proc/net/
ipt_CLUSTERIP/$CLUSTERIP

21 ssh $OTHERNODE "echo
'+$MYNODE' > /proc/net/ipt_

CLUSTERIP/$CLUSTERIP"

22 }

23

24 recover () {

25 ssh $OTHERNODE "echo
'-$MYNODE' > /proc/net/ipt_
CLUSTERIP/$CLUSTERIP"

26 ip address add $CLUSTERIP/24
dev $DEVICE

27 echo "+$MYNODE" > /proc/net/
ipt_CLUSTERIP/$CLUSTERIP

28 }

29

30 # Initialize node

31 modprobe ipt_conntrack

32 ip address add $CLUSTERIP/24
dev $DEVICE

33 iptables -F INPUT

34 iptables -I INPUT -d
$CLUSTERIP -i $DEVICE \

35 -p icmp --icmp-type
echo-request -j CLUSTERIP
--new \

36 --hashmode sourceip
--clustermac $CLUSTERMAC \

37 --total-nodes 2 --local-node

$MYNODE

38

39 # Test if cluster interface is
working

40 ONLINE=1

41 while (true); do

42 if (check_node) then

43 echo "Interface up"

44 if [$ONLINE -eq 0]; then

45 recover

46 ONLINE=1

47 fi

48 else

49 echo "Interface down"

50 if [$ONLINE -eq 1]; then

51 failover

52 ONLINE=0

53 fi

54 fi

55 sleep 1

56 done

57

58 exit 0

Listing 1: Cluster Script

[1] Linux Virtual Server:
http:// www. linuxvirtualserver. org

[2] Stonesoft: http:// www. stonesoft. com

[3] RFC 1812, “Requirements for IP Ver-
sion 4 Routers”:
http:// rfc. net/ rfc1812. html

[4] Bob Jenkins’ “A Hash Function for
Hash Table Lookup”: http:// www.
burtleburtle. net/ bob/ hash/ doobs. html

[5] High-Availability Linux project:
http:// www. linux-ha. org

INFO

CLUSTERIPSYSADMIN

68 ISSUE 81 AUGUST 2007 W W W. L I N U X- M A G A Z I N E . C O M

