
TCP or UDP, whereas PPTP and SSH are
restricted to TCP, only without making
major modifications or using additional
software to transfer the TCP packets
over UDP.

The Trouble with Standards
Why aren’t VPN options like IPsec more
popular? IPsec provides authentication
and encryption of network traffic. IPsec
is supported on virtually every operating
system and most network devices. Most
IPsec servers support a variety of strong
encryption options.

So, why don’t we use IPsec more? Al-
though IPsec has a well-defined stan-
dard, it is implemented by many differ-
ent vendors, some of which have added
extensions or chosen slightly different
ways to implement certain things. In my
experience (between OpenBSD, Linux,
Windows, Cisco, and a few other net-
work equipment makers), configuration
and management of different clients and
servers can be challenging.

Generally, if you stick to a heteroge-
neous environment (e.g., all OpenBSD,
all Windows, or all Cisco servers and
Cisco client software on endpoints), you
will be mostly fine, but if you start mix-
ing and matching, you will likely be in
for a world of pain.

Why SSH?
Here, I will focus on building SSH VPNs.
One of the more compelling advantages
of SSH is that virtually all network plat-
forms with a TCP/​IP stack support SSH.
Even better, about 99% of all systems
running an SSH server/​client are using
OpenSSH [1], which ensures an ex-
tremely high degree of compatibility be-
tween them. About the only systems that
don’t ship with OpenSSH are Windows

W
hen it comes to VPN perfor-
mance, the problems used to
revolve around having
enough CPU power to en-

crypt and decrypt network traffic (watch-
ing a Pentium III struggle with 100Mb
traffic was always fun). Nowadays, CPU

power is cheap, and
now with Intel
AES-NI and
other vendors
supporting AES
with native in-
structions, the
good news is

that most sys-
tems can eas-

ily keep up
with a

gigabyte or more of encrypted traffic. One
of the biggest performance problems
faced by VPNs now is ISPs that either
shape (that is to say they slow down)
VPN traffic or block it completely.

Some VPN Options
On Linux, you have a number of popu-
lar VPN options: IPsec, OpenVPN, PPTP,
and SSH. All four will get you a secure
network between a combination of
hosts and networks. As far as authenti-
cation, virtually all of them support the
use of pre-shared keys or secrets, and
they can all be configured to use PAM,
LDAP, and a variety of other authentica-
tion back ends. However, they have
some important differences. The biggest
difference is the transport mechanisms
used. IPsec does basically everything at
the network layer – except the mutable
headers (those that might be changed in
transit, e.g., the TTL and checksum).
OpenVPN, PPTP, and SSH basically all

operate at the application
layer and simply encrypt
data and then send it as the
payload within a data

packet. The main difference
is that OpenVPN can use either

Building SSH VPNs with OpenSSH

Very Painless
Networks
OpenSSH VPN technology, installed by default on most

Linux, BSD, and Unix systems, lets you mix and match

different clients and servers easily. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 Kurt Seifried

46

Features
Security Lessons: OpenSSH VPNs

November 2012	 Issue 144	 linux-magazine.com | Linuxpromagazine.com	

and lower end network equipment. Vir-
tually all “proper” VPN setups require
root-level access because you will be
modifying your systems’ network inter-
faces and routing tables. However, if you
are only using OpenSSH port forwarding,
you can do this as a normal user with no
additional privileges.

OpenSSH on Windows
OpenSSH installation on Linux is gener-
ally not required because almost all ven-
dors ship it by default and enable it for
remote administration. To install
OpenSSH on Windows, you’ll need to
download Cygwin [2] then, during in-
stallation, simply choose OpenSSH (in
All | Net) for installation. Once installed
on Windows, you need to enable
OpenSSH: Right-click on the Cygwin
menu item or icon, choose Run as ad-
ministrator (running it as a normal user
will not allow you enough access to con-
figure OpenSSH), then simply run:

ssh‑host‑config

When asked to enable privilege separa-
tion, say yes. You’ll then be asked to cre-
ate a new local account, to which you
also agree, then you will be asked
whether you want to install OpenSSH as
a service (you do). For the value of the
CYGWIN daemon, enter ntsec. Finally,
you will be prompted to create a user for
OpenSSH to run as; follow the prompts
and you should be finished. Once done,
you can enable the SSH server as

net start sshd

from the Cygwin command line. To log
in, you need to run the ssh‑user‑config
script, which creates SSH keys and so on
for the currently logged in user so that
automated logins work (which, if you’re
using OpenSSH as a VPN, you probably
want). Once the OpenSSH client and
server are installed, you can configure it
to do something useful.

OpenSSH Port Forwarding
VPNs are great, but often they are over-
kill. Not everyone has a corporate net-
work with hundreds or thousands of
servers a user might need access to.
Often, all you need is access to a few in-
ternal resources, such as email, file shar-
ing, and web services. In this case, you

can either set up an OpenSSH server in-
side the network or allow direct access
(e.g., to the mail server, web server,
etc.). Generally, setting up a separate
server is much safer and easier: Allow
port 22 to an external IP then allow that
DMZ host to connect to your trusted sys-
tems. Please note that for this to work,
the AllowTcpForwarding option in sshd_
config needs to be set to yes; however,
this is the default setting (so it should
work with no problems).

For example, you can allow users to
connect to ports 25 (SMTP) and 143
(IMAP) from the DMZ host. By default,
local port forwarding only binds to local-
host (127.0.0.1), which is ideal for a lap-
top. To set up SSH port forwarding for
localhost port 2500 to port 25 and port
14300 to port 143 on the mail server, you
can use commands like:

ssh user@openssh.example.org U

 ‑L 2500:mail.example.org:25

ssh user@openssh.example.org U

 ‑L 14300:mail.example.org:143

In the above scenario, every user’s lap-
top mail client would connect to local-
host port 25 (to send email) and port 143
(to receive email).

It’s important to note that, by default,
when forwarding ports, OpenSSH only
binds to localhost; thus, by extension,
only local users can connect to the for-
warded port. However, what if you want
to set up a proxy server at a branch of-
fice so all clients can connect securely to
your mail server through an SSH port
forwarding connection? Simply enable
GatewayPorts to yes so that ports will
bind to external servers and not just lo-
calhost.

VPN System Config
What if you need a “real” VPN? On the
OpenSSH server handling clients, you
need to enable tun (tunnel) interfaces
and packet forwarding and potentially
modify firewall rules. Setting up a tun
(tunnel) interface varies a lot.

On Fedora 16 and later, you will want
tunctl, which allows you to assign the
tun interface to a nonprivileged user. On
other distros, you can simply ifconfig
tun0 up or add it to the appropriate net-
work startup scripts. You will also need
to enable IP forwarding, by modifying
the /etc/sysctl.conf file:

Controls IP packet forwarding

net.ipv4.ip_forward = 1

and simply reboot. If you want to enable
IP forwarding, you can run

sysctl ‑w net.ipv4.ip_forward = 1

You might also need to enable forward-
ing in your firewall rules, although many
Linux distributions allow forwarding by
default.

OpenSSH VPN Config
The use of OpenSSH for “real” VPNs has
one critical configuration directive: Per‑
mitTunnel. For tunneling to work, you
need to enable this by either specifying
ethernet for Layer 2 tunneling or yes for
Layer 3 and Layer 2 tunneling. However,
you probably don’t want to give users
administrative access to your OpenSSH
server so that they can log in and run
commands to modify the networking
configuration, for example. The easiest
way to deal with this is to use either the
ForceCommand directive, to run a set pro-
gram or script once the user logs in, or
to modify the ~/.ssh/.authorized_keys
file, to include the commands you want
to run and any SSH options:

command="/opt/bin/vpn‑setup.sh",U

 no‑port‑forwarding,U

 no‑X11‑forwarding,U

 no‑pty <ssh‑rsa key‑string‑here>

Of course, you must set permissions on
the .authorized_keys file so that the user
cannot modify it (both the file and the
parent directory). Alternatively, you can
use ForceCommand to specify a command
that is run, combined with Match. By
specifying a group of users, you can eas-
ily set up accounts that are allowed to
run only the VPN script.

OpenSSH is the only VPN technology
installed by default on almost every
Linux, BSD, and Unix system, and it is
allowed through most host-based fire-
walls by default. Add to that all the work
done by the OpenBSD project to secure it
(privilege separation, code audits, etc.),
and OpenSSH can’t be beat. nnn

[1]	� OpenSSH: http://​www.​openssh.​org/

[2]	� Cygwin: http://​www.​cygwin.​com/

 Info

Features
Security Lessons: OpenSSH VPNs

47linux-magazine.com | Linuxpromagazine.com	 Issue 144	 November 2012

http://www.openssh.org/
http://www.cygwin.com/

