
world, two more popular options are 
Django [3] and Pylons [4]. Perl and PHP 
have a lot of frameworks and applica-
tion-level packages; I think the amount 
of choice has prevented one or a few 
from becoming the “standard.” For Java, 
your best bet is going to be JBoss and 
the related technologies. For traditionally 
compiled languages like C and C++, you 
also have many choices; however, pick-
ing C and C++ for web-based projects 
will generally be painful.

Extending a Framework
The chances your framework will have 
all the capabilities you need are slim; 
your application likely will need some-
thing not provided directly by the frame-
work (e.g., unit testing; messaging; in-
terfaces to other APIs and systems, like 
cloud providers and Google; etc.). These 
framework gaps are one reason Ruby on 
Rails is so popular: It has more than 
45,000 Gems covering pretty much ev-
erything you can imagine. Python has 
PyPI (Python Package Index), which is a 
collection of more than 24,000 packages 
– one of my favorites is BeautifulSoup, a 
great HTML parser. 

When picking a language and frame-
work, don’t forget to take the ecosystem 
into account. Although I hate to use that 
word, it’s appropriate here: Being able to 
pull in high-quality third-party libraries 
and plugins will reduce development 

O
ne theme I’ve noticed in many 
large web applications is badly 
reinvented wheels. I suspect a 
lot of this is caused by the “not 

invented here” syndrome or by develop-
ers who want to avoid external depen-
dencies (portability is nice). The prob-
lem is that virtually all web applications 
have a rather complex set of require-
ments and security needs that often are 
not implemented well (if at all). And, a 
lot of us who have been programming 
web applications for more than a decade 
might still be a bit mentally stuck in the 
2000s, when a little HTML and some 
form fields were all you needed to make 
an “interactive” site that actually worked 
quite well. Conversely, I can’t help but 
think newer programmers aren’t aware 
of all the problems already discovered 
and solved in frameworks during the 
past decade and a half.

Why Frameworks?
One compelling reason to use frame-
works is that they not only do a lot of 
the heavy lifting, the better frameworks 
do it properly. I say “better frameworks,” 
because at this point there are literally 
thousands, and many are terrible. Addi-
tionally, the more popular frameworks, 
like Django and Ruby on Rails, have tens 
of thousands of add-ons (Ruby Gems, 
Django plugins, etc.) that can be used to 
provide functionality. Plus, someone else 
maintains the code for you: win-win! 
The downside of these frameworks is 
that you have to build your applications 

using their idioms and design patterns: If 
you haven’t read Design Patterns [1], 
about designing object-oriented soft-
ware, you might want to buy a copy.

MVC and REST
One popular design pattern with web 
frameworks is the MVC (Model, View, 
Controller) pattern (Figure 1). In a nut-
shell, you have a controller, which sends 
commands on the basis of either user ac-
tions or other external or internal events, 
like an order generation; a model, which 
represents the system, essentially a large 
state machine; and a view, which is out-
put sent to the user or other systems. 
One reason this design pattern is popular 
is that it supports stateless protocols 
(like HTTP) rather well, whereas many 
traditional design patterns assume a 
fully stateful system.

Another popular pattern is the REST 
(REpresentational State Transfer) pat-
tern, which maps directly to HTTP 1.1 
and loosely to many back ends, like SQL, 
NoSQL, cache engines (e.g., mem-
cached), and so on. REST makes several 
assumptions, including a client-server de-
sign, which is pretty much the rule for 
all web-based components, including 
back-end elements like SQL/​NoSQL. It 
also assumes a layered system, which is 
generally the rule for web-based applica-
tions; caching – again, something gener-
ally done at most levels in web apps; 
and statelessness, also typically the rule 
for web apps and back-end components.

Picking a Framework
An obvious constraint on picking a 
framework is picking one that supports 
your language(s) of choice. In the Ruby 
world, you’re pretty much always going 
to pick Ruby on Rails [2], and for 
JavaScript, it’ll be node.js. In the Python 

Evaluating web frameworks

Abundance
Stop re-inventing the wheel and build your web applications 

with the excellent tools already available. By Kurt Seifried

Kurt Seifried is an Information Security 
Consultant specializing in Linux and net-
works since 1996. He often wonders how 
it is that technology works on a large 
scale but often fails on a small scale.

    Kurt Seifried

Figure 1: The Model-View-Controller process.

54

Features
Security Lessons: Web Frameworks

December 2012	 Issue 145	 linux-magazine.com  |  Linuxpromagazine.com	



time significantly. Conversely, using un-
maintained, badly documented, or oth-
erwise poor-quality libraries and plugins 
will cause a great deal of pain and in-
crease development (debugging and 
bug-fixing) time significantly.

Accounts and 
Authentication
One area in which many applications are 
weak is in the handling of accounts and 
authentication. Considering how central 
this is to most applications (especially if 
you want to sell something or restrict ac-
cess to resources), it can be a significant 
problem. When picking a framework, 
make sure it supports proper account 
management: Can you disable an ac-
count, as opposed to removing it en-
tirely? Can you create groups and dele-
gate administration? Can you give cus-
tomers control over their own users?

One popular web application treats 
accounts as if they are owned by the 
user, so that even if you, as the cus-
tomer, add 20 users to access your site, 
you can’t modify their accounts. You 
can’t, for example, disable their ac-
count, change the password, add their 
name or phone number, and so forth. 
This means you have to chase users 
around and get them to set up their ac-
counts properly, and for password re-
sets, the user has to contact the pro-
vider to do it. You can do nothing to 
modify the account. Other applications 
I have encountered do not allow you to 
list the resources a user account has ac-
cess to; instead, you have to go through 
all the resources and check the permis-
sions applied to them, hunting for the 
permission(s) you want to remove.

Not everyone makes the same as-
sumptions when it comes to account 
management, so make sure it will work 
for you. As far as authentication goes, 
most support username and password, 
most support external providers like 
OpenID or OpenAuth, and most can sup-
port some form of two-factor authentica-
tion. However, very few support client-
side SSL certificates or Kerberos, for ex-
ample. Again, make sure you know what 
you’ll need so you don’t paint yourself 
into a corner.

Logging and Debugging
Another significant weakness in many 
web frameworks is logging and debug-

ging. Most frameworks provide basic 
logging (requests, who made them, re-
turn status, etc.), but few will allow you 
to trace a single request easily through 
multiple subsystems. 

For example, a request might first be 
handled for URL redirection before being 
passed off to a URL handler. This han-
dler might in turn handle the request 
through a cached copy, or it might create 
a new reply, touching multiple other sys-
tems (authentication, data storage back 
ends, caching layers, etc.). These back 
ends in turn could trigger additional ac-
tions. If you were to pass a request ID 
with subsequent queries (and log every-
thing), you could in theory ultimately 
see what everything is doing.

Debugging is another sticky problem, 
especially on production systems. Sim-
ply enabling debugging for all requests 
on a major site might collapse the sys-
tem (because of logging requirements), 
so you need to determine whether the 
framework allows you to enable debug-
ging selectively on a single server and 
steer all testing requests to it or whether 
can you enable detailed logging for a 
specific user or IP address.

Conclusions
Besides the issues I’ve already covered, 
you also need to consider the following 
points:
•	 Data storage and caching – 

Things like Python 
pickle() are not safe; 
use JSON.

•	 Session manage-
ment – Are sessions 
secured against hi-
jacking?

•	 CSRF – Protection 
from cross-site re-
quest forgery.

•	 Input and output 
validation – XSS, 
SQL injection, etc.

•	 Clickjacking protec-
tion (e.g., 
X‑Frame‑Op‑
tions [5]).

•	 Site 
changes/ 
URL re-
direc-
tion.

•	 Websockets – Are they safely sup-
ported?

Ironically, many of these popular web-
based frameworks have grown out of 
large web projects at companies that 
built in-house frameworks and then re-
leased them publicly. 

As a rule of thumb, however, unless 
you have a minimum of several dozen 
dedicated web software programmers 
that are really good, you should not be 
building your own framework. Instead, 
you should find a framework that works 
for you and start using it. Of course, 
there will always be exceptions even to 
this rule.  nnn

[1]	� Gamma, Erich, Richard Helm, Ralph 
Johnson, and John Vlissides. Design 
Patterns: Elements of Reusable Ob-
ject-Oriented Software. Addison-
Wesley, 1994

[2]	� Ruby On Rails Security Guide: http://​
guides.​rubyonrails.​org/​security.​html

[3]	� Security in Django:  
https://​docs.​djangoproject.​com/​en/​
dev/​topics/​security/

[4]	� Pylons: http://​www.​pythonsecurity.​
org/​wiki/​pylons/

[5]	� The X-Frame-Options response 
header: https://​developer.​mozilla.​org/​
en‑​US/​docs/​The_​X‑​FRAME‑​

OPTIONS_​response_​header

    Info

Features
Security Lessons: Web Frameworks

linux-magazine.com  |  Linuxpromagazine.com	 Issue 145	 December 2012 55

http://guides.rubyonrails.org/security.html
http://guides.rubyonrails.org/security.html
https://docs.djangoproject.com/en/dev/topics/security/
https://docs.djangoproject.com/en/dev/topics/security/
http://www.pythonsecurity.org/wiki/pylons/
http://www.pythonsecurity.org/wiki/pylons/
https://developer.mozilla.org/en-US/docs/The_X-FRAME-OPTIONS_response_header
https://developer.mozilla.org/en-US/docs/The_X-FRAME-OPTIONS_response_header
https://developer.mozilla.org/en-US/docs/The_X-FRAME-OPTIONS_response_header

