
Working at the command line

At Your CommAnd

F
lo

rin
 R

osu
, Foto

lia

poses. The option ‑‑debugger is also used
to log debugging information.

Getting Around at the
Prompt
In the old days, the command prompt
was the primary means of interacting
with Linux, but most contemporary
Linux systems open up in some form of
graphical user interface. To reach the
command prompt on a GUI-based Linux
system, you’ll need to open a terminal
window. Systems that use the Gnome
desktop environment typically include
the Gnome Terminal application. On
Ubuntu, for instance, you’ll find the Ter-
minal app in Applications | Accessories
(Figure 2). KDE-based openSUSE sys-
tems, on the other hand, include the
Konsole terminal program, which you
will find in the System menu. Several
other terminal programs are also avail-
able for Linux systems. Consult your
vendor documentation for more on find-
ing your way to a command prompt.

While in the shell, forget about your
mouse, although you can copy and
paste, as the Edit menu reveals. Commu-
nicate with your system through the key-
board; type a line, then press Enter. Of
course, modern tools like Konsole or the

Bash runs non-interactively, reading in-
structions from the .bashprofile file in
your home directory. In many cases,
commands give you the option to create
a file and run it non-interactively.

Most of the time, though, Bash runs as
an interactive shell, meaning that you
can enter commands and scripts using
the keyboard, and Bash processes your
input and displays output. You can also
fine-tune how Bash runs with a set of
options similar to any commands. These
can be entered in a KDE Konsole profile
or in a script that you run when opening
a command line.

One of Bash’s most common options
is ‑r, which places Bash in restrictive
mode. In restrictive mode, some actions,
like using the cd command or changing
environment variables, are disabled.
Some administrators place Bash in re-
strictive mode in the hope of limiting the
damage that rash users can cause on a
network, but, more often, restricted
shells are used to sandbox – that is, run
a command in isolation for test pur-

Many desktop users approach the
command line as though armed
with a magic spell. They have a

command – complete with options – to
type or paste to get the desired results,
but they are unclear what else might be
going on. This approach is understand-
able; however, if you take the time to un-
derstand something of the structure of
the command line, you can increase
your control over your computing.

By default, most distributions run Bash
(the Bourne Again Shell). Bash is a com-
mand-line interpreter – a program that
runs macros and other utilities. These
macros and utilities are the commands
that you enter at the prompt. They in-
clude those built into Bash, such as cd,
and many others that are external, includ-
ing most of the commands that you run.
However, from the end user’s perspective,
the difference between internal and exter-
nal commands is unimportant.

Like other shells, Bash can run inter-
actively or non-interactively. When act-
ing as a login shell for your account,

Beyond all the splash screens, screen savers, and vivid rock-star

wallpaper is the simple yet powerful Bash shell. By Bruce Byfield

introducing BashGettinG Around

6 Linux SheLL handBook

Gnome Terminal are not terminals in the
old sense but are actually terminal emu‑
lators. You can close or minimize the ter-
minal window as you would any other
window on your Linux system.

This handbook assumes you have
some basic knowledge of how to move
around in the Bash shell. If you are look-
ing for a very basic crash course, a few
simple commands will help you get fa-
miliar with the command prompt.

Most likely, the terminal will open in
your home directory. Type ls to list the
contents of the directory.

You can use the cd (“change direc-
tory”) command to move to another di-
rectory. You’ll also need to mention the
path to the target directory:

$ cd /home/berney/Music

Most Bash shells let you use a period (.)
in the path to represent the current di-
rectory. In other words, a user named
berney could move from his home direc-
tory to the Music subdirectory by typing:

$ cd ./Music

A double period means “go up one level
in the directory path,” so if ber‑
ney wanted to go from the /
home/berney/Music directory
back to his home directory (/
home/berney), he could type:

$ cd ..

Many systems also use the tilde
character (~) to represent the
home directory, so no matter
where you are, you can always re-
turn to your home directory with:

$ cd ~

If you start to get lost when you are navi-
gating around in the directory structure,
you can always enter the pwd command
(“Print Working Directory”) to display
the name of the current directory.

To create a new directory, enter the
mkdir command and give the name of
the new directory:

$ mkdir /home/berney/Music/Beatles

Or, if berney were already in his Music
directory, he could just type:

$ mkdir ./Beatles

The cp command lets you copy files. The
syntax is as follows:

cp source_filename destination_filename

The default is to look in the current di-
rectory, however, you can include a path
with the source or destination to copy
from or to a different directory. Of
course, you must have the necessary
permissions to access the directory.

To delete a file, use the rm command,

and to delete a directory, the rm ‑r or
rmdir command. (Needless to say, be
careful how you use these commands.)

A summary of these basic commands
appears in Table 1. Each of these com-
mands includes additional options that
you can enter at the command line. As
you will learn later in this article, you
can type man or info, followed by the
command, for information on syntax
and usage. For instance, to learn the var-
ious options for the mkdir command,
you would enter:

man mkdir

In later articles, you will learn about
more Bash commands for modifying
text, managing users, overseeing
 processes, and troubleshooting net-
works.

History
If you are doing repetitive commands in
Bash, you can save time by using the
history for the current account. Stored in
the bash_history file in your home direc-
tory is a list of commands that you have
run, numbered with 1 as the oldest. You
can use the arrow keys to move up and
down or use the plain command history
to see a complete list of what is stored in
your history.

If you are somewhat more adventur-
ous, you can use a number of shortcuts
to run a previous command in the his-
tory. !number runs the command with
that number. Similarly, !‑number sets the
number of previous commands to revert
to, and !string runs the first command
that includes that string.

When you are either very certain of
what you are doing or willing to live
dangerously, you can enter ^string1^
string2^ to repeat the last command but
replace the first string of characters with
the second. Another trick is to add :h to
remove the last element of the path in
the command or :t to remove the first el-
ement. However, if you are uncertain of
the results, you can add :p to print the

You can modify how Bash operates with
its built-in commands. For instance, the
umask command changes the default per-
missions used when creating a file,
whereas the alias command can be used
to change the name used to run a specific
command – for example, my debian sys-
tem comes with ls ‑‑color=auto aliased to
ls, so that directories and different file
types are all colored.

another way to modify Bash is through
the shopt built-in (Figure 1). The shopt
command includes a number of interest-
ing, if seldom used, possibilities. For ex-

ample, shopt ‑s cdspell enables Bash to
correct minor misspellings in its default
directories when you use the cd com-
mand. Similarly, shopt ‑s checkjobs lists
any stopped jobs that remain when you
close the shell.

These few examples of what you can do
with Bash should be sufficient to show
that Bash is far from the passive recipient
of your commands. instead, like the com-
mands that it runs, Bash is full of options
and can be customized to suit your needs.
You’ll learn more about customizing the
Bash environment later in this issue.

Tweak Your Bash

Figure 1: Shopt is a command built into Bash

that provides many interesting features.

Here, the cdspell option automatically cor-

rects errors when you type directory names.

Figure 2: Starting up a terminal window in Ubuntu.

GettinG Aroundintroducing Bash

7iSSue 05Linux SheLL handBook

command that you find but not run it
(Figure 3).

documentation
Bash and the individual commands as-
sociated with it add up to a lot to learn.
Fortunately, you don’t have to remember
everything. Like other Unix-type sys-
tems, GNU/ Linux includes a number of
different help systems.

The most basic form of help is the
man page (Figure 4). Man pages are di-
vided into eight sections (see Table 2),
but most of the time, you only need to
type the command man followed by the
command, file, or concept about which
you want information.

However, some topics have entries in
several sections. To go to the specific
section, place the number of the section
between the man command and the
topic. Thus, man man takes you to the
basic page about the man command in
section 1, but man 7 man takes you to a
section about the collection of macros
used to create man pages. Either way,
when you are finished reading, press

Ctrl+Z followed by Ctrl+C to return to
the command line.

When you are doing deeper research,
consider using apropos followed by a
topic to receive a list of all the applicable
man pages. The one drawback to apro‑
pos is that, unless you are very specific,
you could get dozens of pages, only a
few of which are relevant to you.

By contrast, if all you need is a brief
snippet of information, use whatis fol-
lowed by the command. For example, if
you enter whatis fdisk, you receive the
line fdisk (8) ‑‑ Partition table manipula‑
tor for Linux. The (8) refers to the man
section where detailed information is
available. Similarly, if you need to iden-
tify a file type, use type then the file.

For several decades, man pages have
been the standard help form. However,
more than a decade ago, the GNU Proj-
ect made info its official help format.
But, instead of replacing man, info has
simply become an alternative (Figure 5).
Although some man pages today stress
that the full help file is only available
through info, in practice, many develop-

ers simply maintain both info and man,
focusing on the command structure in
the man pages and on basic instruction
in the info pages. Still, it can never hurt
to check both in the hope of finding the
most complete information.

digging deeper
As experts will be quick to point out,
these comments are only the barest out-
line of subjects that have filled entire
books. Read on for more on working in
the Bash shell. If you want additional in-
formation, a good place to start is the
man pages. Another important reference
is the online Bash Reference Manual [1].
Read this material with a Bash shell
open next to the text, so that you can try
commands as you learn about them. n

ls Lists contents of the current di-
rectory

cd Change directory

pwd Show current working directory

mkdir Make directory

cp Copy file(s)

rm Remove file(s)

rmdir Remove directory

Table 1: Some Basic
Bash Commands Section description

1 General commands

2 System calls

3 C library functions

4 Special files (usually devices
found in /dev) and drivers

5 File formats and conventions

6 Games and screensavers

7 Miscellanea

8 System administration com-
mands and daemons

Table 2: Man Page Sections

Figure 4: The man page for the list command. Figure 5: The info page for the ls command.

Figure 3: You can use several keyboard

shortcuts to run commands in the history

with slight changes. Here, the string “bruce”

is replaced with “trish” in the first case,

then only the head of the path is preserved

in the second.

[1] Bash Reference Manual: http:// www.
 gnu. org/ software/ bash/ manual/
 bashref. html

INFO

introducing BashGettinG Around

8 Linux SheLL handBook

