
unix-like operating systems have
historically been very much
about text processing. Really,

the Unix design religion is: Make simple
tools whose output can be manipulated
by others with the use of pipes and other
forms of output redirection. In this arti-
cle, I’ll look at the wealth of Linux com-
mand-line tools for combining, selecting,
extracting, and otherwise manipulating
text.

wc
The wc (word count) command is a sim-
ple filter that you can use to count the
number of lines, characters (bytes), and,
yes, even the number of words in a file.
Whereas counting lines and bytes tends
to be useful, I rarely find myself using wc
to count words.

You can count lines in a file with wc -l:

$ wc ‑l kern.log

1026 kern.log

If you don’t specify a file name, wc will
also read the standard input. To exploit

this feature, use the following useful
idiom for counting the number of files in
a directory:

$ ls | wc ‑l

138

To count the number of bytes in a file,
use wc -c:

$ wc ‑c kern.log

106932 kern.log

On a single file, wc -c isn’t necessarily
that interesting because you could see
the same information in the output of ls
-l. However, if you combine wc with the
 find command, you get byte counts for
all files in an entire directory tree:

$ find /var/log ‑type f U

 ‑exec wc ‑c {} \;

79666 /var/log/kern.log.6.gz

3781 /var/log/dpkg.log.4.gz

106932 /var/log/kern.log

...

After I examine a few more shell tricks
in the sections that follow, I’ll return to
this example.

head and tail
Another pair of simple text-processing
filters are head and tail, which extract
the first 10 or the last 10 lines from their
input, respectively. Also, you can specify
a larger or smaller number of lines. For
example, to obtain the name of the most
recently modified file in a directory, use:

$ ls ‑t | head ‑1

kern.log

Then if you wanted to see the last few
lines of that file, use:

$ tail ‑3 kern.log

Nov 21 09:00:19 elk kernel: U

 [11936.090452] [UFW BLOCK INPUT]: U

 IN=eth0 OUT=...

Nov 21 09:00:21 elk kernel: U

 [11938.083655] [UFW BLOCK INPUT]: U

 IN=eth0 OUT=...

Nov 21 09:00:25 elk kernel: U

 [11942.134431] [UFW BLOCK INPUT]: U

 IN=eth0 OUT=...

Here’s a trick for extracting a particular
line from a file by piping head into tail:

enjoy a crash course on some of the text-processing and -filtering capa-

bilities found in linux. BY HAL POMERANZ

Text processing and filtering

TACKLING TEXT

N
ich

o
la

s P
iccillo, Foto

lia

Text Manipulation Toolsgetting around

22 linux shell handbook

$ head ‑13 /etc/passwd | tail ‑1

www‑data:x:33:33:www‑data:U

 /var/www:/bin/sh

In this case, I am extracting the 13th line
of /etc/ passwd, but you could easily se-
lect any line just by changing the nu-
meric argument that is passed in to the
head command.

Another useful feature of the tail com-
mand is the -f option, which displays the
last 10 lines of the file as usual, but then
keeps the file open and displays any new
lines that are appended onto the end of
the file. This is particularly useful for
keeping an eye on logfiles – for example,
tail -f kern.log.

cut and awk
head and tail are useful for selecting par-
ticular sets of lines from your input, but
sometimes you want to extract particular
fields from each input line. The cut com-
mand is useful when your input has reg-
ular delimiters, such as the colons in
/etc/ passwd:

$ cut ‑d: ‑f1,6 /etc/passwd

root:/root

daemon:/usr/sbin

bin:/bin

...

The -d option specifies the delimiter
used to separate the fields on each line,
and -f allows you to specify which fields
you want to extract. In this case, I’m
pulling out the usernames and the home
directory for each user. cut also lets you
pull out specific sequences of characters
by using -c instead of -f. Here’s an exam-
ple that filters the output of ls -l so that
you see just the permissions flags and
the file name:

$ ls ‑l | cut ‑c2‑10,52‑

otal 1540

rwxr‑xr‑x acpi

rw‑r‑‑r‑‑ adduser.conf

rw‑r‑‑r‑‑ adjtime

...

Darn! The output contains the header
line from ls -l. Happily, tail will help
with this:

$ ls ‑l | tail ‑n +2 | cut ‑c2‑10,52‑

rwxr‑xr‑x acpi

rw‑r‑‑r‑‑ adduser.conf

rw‑r‑‑r‑‑ adjtime

...

That looks better! Notice the syntax with
tail here. The -n option is the alternative
(POSIX-ly correct) way of specifying the
number of lines tail should output. So
tail -10 and tail -n 10 are equivalent. If
you prefix the number of lines with +,
as in the example above, it means start
with the specified line. So here I’m telling
tail to display all lines from the second
line onward. The + syntax only works
after -n.

cut is wonderful for lots of tasks, but
the output of many commands is sepa-
rated by white space and often irregular.
The awk command is best for dealing
with this kind of input:

$ ps ‑ef | awk U

 '{print $1 "\t" $2 "\t" $8}'

UID PID CMD

root 1 /sbin/init

root 2 [kthreadd]

root 3 [migration/0]

...

awk automatically breaks up each input
line on white space and assigns each
field to variables named $1, $2, and so
on. awk is a fully functional scripting
language with many different capabili-
ties, but at its simplest, you can just use
the print command to output particular
input fields as I’m doing here.

awk also allows you to select specific
lines from your input with the use of
pattern matching or other conditional
operators, which saves you from first
having to filter your input with grep or
some other tool. For example, suppose I
wanted the filtered ps output above, but
only for my own processes:

$ ps ‑ef | awk '/^hal / U

 {print $1 "\t" $2 "\t" $8}'

hal 7445 U

 /usr/bin/gnome‑keyring‑daemon

hal 7460 x‑session‑manager

hal 7566 U

 /usr/bin/dbus‑launch

...

Here, I use the pattern match operator
(/…/) to produce output only for lines
that start with hal<space>. The com-
mand ps -ef | awk '($1 == "hal") …'
would accomplish the same thing.

You can use the -F option with awk to
specify a delimiter other than white
space. This lets you use awk in places
where you might normally use cut, but
where you want to use awk’s conditional
operators to match specific input lines.

Suppose you want to output user-
names and home directories as in the
first cut example, but only for users with
directories under /home:

$ awk ‑F: '($6 ~ /^\/home\//) U

 { print $1 ":" $6 }' /etc/passwd

sabayon:/home/sabayon

hal:/home/hal

laura:/home/laura

Rather than matching against the entire
line, the command here uses the ~ op-
erator pattern match against a specific
field only.

sort
Sorting your output is often useful:

$ awk ‑F: '($6 ~ /^\/home\//) U

 { print $1 ":" $6 }' U

 /etc/passwd | sort

hal:/home/hal

laura:/home/laura

sabayon:/home/sabayon

By default, sort simply sorts alphabeti-
cally from the beginning of each line of
input. Sometimes numeric sorting is
what you want, and sometimes you
want to sort on a specific field in each
input line. Here’s a classic example that
shows how to sort your password file by
the user ID field (useful for spotting du-
plicate UIDs and when somebody has
added illicit UID 0 accounts):

$ sort ‑n ‑t: ‑k3 /etc/passwd

root:x:0:0:root:/root:/bin/bash

daemon:x:1:1:daemon:/usr/sbin:/bin/sh

bin:x:2:2:bin:/bin:/bin/sh

...

The -n option indicates a numeric sort, -t
specifies the field delimiter (such as cut
-d or awk -F), and -k specifies the field(s)
to sort on (clearly they were running out
of option letters).

Also, you can reverse the sort order
with -r to get descending sorts:

$ ls /etc/rc3.d | sort ‑r

S99stop‑readahead

getting aroundText Manipulation Tools

23linux shell handbook

S99rmnologin

S99rc.local

...

Remember the find command that I used
wc -c with to get byte counts for all files
under a given directory? Well, you can
sort that output and then filter with head
to get a count of the 10 largest files
under your chosen directory:

$ find /var/log ‑type f ‑exec U

 wc ‑c {} \; | sort ‑nr | head

44962814 /var/log/vnetlib

24748291 /var/log/syslog

24708201 /var/log/mail.log

24708201 /var/log/mail.info

10243792 /var/log/ConsoleKit/history

3902994 /var/log/syslog.0

3782642 /var/log/mail.log.0

3782642 /var/log/mail.info.0

1039348 /var/log/vmware/hostd‑7.log

804391 /var/log/installer/partman

uniq
When you’re extracting fields with cut
and awk, you sometimes want to output
just the unique values. Although there’s
a uniq primitive for this, the trick is that
uniq only suppresses duplicate lines that
follow one right after the other. There-
fore, you must typically sort the output
before handing it off to uniq. For exam-
ple, to get a list of all users with pro-
cesses running on the current system,
use the following command:

$ ps ‑ef | awk '{print $1}' U

 | sort | uniq

apache

dbus

dovecot

...

sort | uniq is such a common idiom that
the sort command has a -u flag that does
the same thing. Thus, you could rewrite
the above example as ps -ef | awk '{print
$1}' | sort -u instead.

The uniq program has lots of useful
options. For example, uniq -c counts the
total number of lines merged, and you
could use this to report the number of
processes running as each user, as in the
following command:

$ ps ‑ef | awk '{print $1}' U

 | sort | uniq ‑c

 8 apache

 1 dbus

 8 dovecot

...

And with the use of another sort com-
mand, you could sort that output by the
number of processes:

$ ps ‑ef | awk '{print $1}' U

 | sort | uniq ‑c | sort ‑nr

 121 root

 11 hal

 8 dovecot

 8 apache

...

Another useful trick is uniq -d, which
only shows lines that are repeated (du-
plicated) and doesn’t show unique lines.
For example, if you want to detect dupli-
cate UIDs in your password file, you
could do this:

$ cut ‑d: ‑f3 /etc/passwd U

 | sort ‑n | uniq ‑d

In this case, I didn’t get any output – no
duplicate UIDs – which is exactly what I
want to see.

By the way, a uniq -u command will
output only the unique (non-duplicated)
lines in your output, but I don’t find my-
self using this option often.

paste and join
Sometimes you want to glue multiple
input files together. The paste command
simply combines two files on a line-by-
line basis, with tab as the delimiter by
default. For example, suppose you had a
file, capitals, containing capital letters
and another file, lowers, containing the
letters in lower case. To paste these files
together, use:

$ paste capitals lowers

A a

B b

C c

...

Or if you wanted to use something other
than tab as the delimiter:

$ paste ‑d, capitals lowers

A,a

B,b

C,c

...

But it’s not really that common to want
to glue files together on a line-by-line
basis. More often you want to match up
lines on some particular field, which is
what the join command is for. The join
command can get pretty complicated, so
I’ll provide a simple example that uses
files of letters.

To put line numbers at the beginning
of each line in the files, use the nl pro-
gram:

$ nl capitals

 1 A

 2 B

 3 C

...

The join command could then stitch to-
gether the resulting files by using the
line numbers as the common field:

$ join <(nl capitals) U

<(nl lowers)

1 A a

2 B b

3 C c

...

Notice the clever <(…) Bash syntax,
which means, substitute the output of a
command in this place where a file name
would normally be used.

For some reason, when I’m using join,
life is never this easy. Some crazy combi-
nation of fields and delimiters always
seems to be the result. For example, sup-
pose I had one CSV file that listed the
top 20 most populous countries along
with their populations:

1,China,1330044544

2,India,1147995904

3,United States,303824640

...

And suppose my other file listed the cap-
ital cities of all the countries in the
world:

Afghanistan,Kabul

Albania,Tirane

Algeria,Algiers

...

What if my task were to connect the cap-
ital city information with each of the 20
most populous countries? In other
words, I want to glue the information in

Text Manipulation Toolsgetting around

24 linux shell handbook

the two files together with the use of
field 2 from the first file and field 1 from
the second file. The complicated thing
about join is that it only works if both
files are sorted in the same order on the
fields you’re going to be joining the files
on. Normally I end up doing some pre-
sorting on the input files before giving
them to join:

$ join ‑t, ‑1 2 ‑2 1 <(sort ‑t, U

 ‑k2 most‑populous) <(sort cities)

Bangladesh,7,153546896,Dhaka

Brazil,5,196342592,Brasilia

China,1,1330044544,Beijing

...

The options to the join command specify
the delimiter I’m using (-t,) and the
fields that control the join for the first (-1
2) and second (-2 1) files. Once again,
I’m using the <(…) Bash syntax, this
time to sort the two input files appropri-
ately before processing them with join.

The output isn’t very pretty. join out-
puts the joined field first (the country
name), followed by the remaining fields
from the first file (the ranking and the
population), followed by the remaining
fields from the second file (the capital
city). The cut and sort commands can
pretty things up a little bit:

$ join ‑t, ‑1 2 ‑2 1 <(sort ‑t, U

 ‑k2 most‑populous) <(sort cities) U

 | cut ‑d, ‑f1,3,4 | sort ‑nr ‑t, ‑k2

China,1330044544,Beijing

India,1147995904,New Delhi

United States,303824640,Washington D.C.

...

Examples like this are where you really
start to get a sense of just how powerful
the text-processing capabilities of the op-
erating system are.

split
Joining files together is all well and
good, but sometimes you want to split
them up. For example, I might split my
password-cracking dictionary into
smaller chunks so that I can farm out the
processing across multiple systems:

$ split ‑d ‑l 1000 dictionary U

 dictionary.

$ wc ‑l *

 98569 dictionary

 1000 dictionary.00

 1000 dictionary.01

 1000 dictionary.02

...

Here, I’m splitting the file called diction-
ary into 1000-line chunks (-l 1000, is ac-
tually the default) and assigning diction-
ary as the base name of the resulting
files. Then I want split to use numeric
suffixes (-d) rather than letters, and I use
wc -l to count the number of lines in
each file and confirm that I got what I
wanted.

Note that you can also specify -, mean-
ing the standard input, instead of a file
name. This can be useful when you
want to split the output of a very ver-
bose command into manageable chunks
(e.g., tcpdump | split -d -l 100000 -
packet-info).

tr
The tr command allows you to transform
one set of characters into another. The
classic example is mapping uppercase
letters to lowercase. For this example, to
transform the capitals file I used previ-
ously, I’ll use:

$ tr A‑Z a‑z < capitals

a

b

c

...

But this is a rather silly example. A more
useful task for tr is this little hack for
looking at data under /proc:

$ cd /proc/self

$ cat environ

GNOME_KEYRING_SOCKET=/tmp/U

 keyring‑lFz8t4/socketLOGNAMEU

 =halGDMSESSION=default...

$ tr \\000 \\n <environ

GNOME_KEYRING_SOCKET=/tmp/U

 keyring‑lFz8t4/socket

LOGNAME=hal

GDMSESSION=default

...

Typically /proc data are delimited with
nulls (ASCII zero), so when you dump
/proc to the terminal, everything just
runs together, as shown in the output of
the cat command above. By converting
the nulls (\000) to newlines (\n), every-
thing becomes much more readable.
(The extra backwhacks (\) in the tr com-

mand here are necessary because the
shell normally interprets the backslash
as a special character. Doubling them up
indicates that the backslash should be
taken literally.)

Instead of converting one set of char-
acters to another, you can use the -d op-
tion simply to delete a particular set of
characters from your input. For example,
if you don’t happen to have a copy of the
dos2unix command handy, you can al-
ways use tr to remove those annoying
carriage returns:

$ tr ‑d \\r <dos.txt >unix.txt

Or, for a sillier example, here’s a way for
all you fans of The Matrix to get a spew
of random characters in your terminal:

$ tr ‑d ‑c [:print:] </dev/urandom

Here I’m using [:print:] to specify the set
of printable characters, but I’m also em-
ploying the -c (compliment) option,
which means all characters not in this
set. Thus, I end up deleting everything
except the printable characters.

Conclusion
This has been a high-speed introduction
to some of the text-processing and -filter-
ing capabilities in Linux, but of course it
really only just scratches the surface.
Lots of sites on the Internet have more
examples and ideas for you to study, in-
cluding shelldorado.com, command-
linefu.com, and the weekly blog I co-au-
thor with several friends at blog.com-
mandlinekungfu.com.

The online manual pages can help a
lot too – and don’t forget man -k for key-
word searches if you’ve forgotten a com-
mand name or just aren’t sure where to
start! But really, the best teachers are
practice, practice, and practice. I’ve been
using Unix and Linux systems for more
than 20 years, and I’m still learning
things about the shell command line. n

hal Pomeranz is the Founder and
Technical lead of deer Run associ-
ates, an iT and information security
consulting firm. he is also a Faculty
Fellow of the sans institute and the
course developer and primary instruc-
tor for their linux/ unix security certi-
fication track (GCux). and, yes, he
could replace you with a very small
shell script.

T
H

E
 A

U
T

H
O

R

getting aroundText Manipulation Tools

25linux shell handbook

