
a decade ago, Debian users used
to look down on users of Red
Hat and other RPM-based distri-

butions. Whereas Debian users had apt-
get and dpkg to save them from depen-
dency hell – situations in which software
installation is impossible because of an
uninstalled library – users of RPM-based
distributions had to dig themselves out
of dependency hell on their own.

Today, Debian and Ubuntu users have
no reason to be so smug. The RPM dis-
tros have caught up with the Debian
tools and produced several package
managers that more or less equal apt-
get’s functionality.

Of these package managers, the most
popular is Yellowdog Updater, Modified,

better known as Yum. This rewriting of
an earlier package manager for Yellow
Dog Linux is now maintained by Seth
Vidal, a Red Hat Employee, and used by
many of the major RPM distributions, in-
cluding Fedora, Red Hat, and CentOS.

Just as apt-get in Debian provides
users access to the functionality of dpkg,
so Yum acts as a wrapper for rpm, the
basic command for RPM package man-
agement. The main difference is that,
whereas dpkg resolves dependency
problems on its own, rpm does not. That
functionality resides entirely in Yum.

From the user’s perspective, this dif-
ference is unimportant. Although you
can use Yum indirectly from such desk-
top applications as PackageKit and

Yumex, Yum is so well written that you
can easily learn to run it directly from
the command line.

Learning the Basics
Like apt-get, Yum has a consistent basic
format: the basic command (yum), the
sub-command (what you are doing), and
the packages involved. The main differ-
ence is in the list of sub-commands in-
volved. Yum is more organized than apt-
get, and some of its sub-commands pro-
vide functionality that with apt-get re-
side in a related utility, such as apt-
cache.

The sub-command that you will prob-
ably use most often is install. For in-
stance, if you plan to install the Book

The RPM package manager Yum has its own advantages over other tools. BY BRUCE BYFIELD

Yummy, yummy, yummy

SERVE ME RIGHT

ManageMentYum

65linux shell handbook

12
3

rf (E
xclu

siv
e), 12

3
R

F

typeface for the free Gentium font, the
basic command in Fedora would be

 yum install U

 sil-gentium-basic-book-fonts

much as it would be with apt-get (al-
though the exact package name might
differ).

However, Yum is somewhat more ver-
bose than apt-get in offering feedback
(Figure 1). It begins by listing which plu-
gins are installed for Yum, then it calcu-
lates which packages need to be updated
and which dependencies the requested
package needs. For instance, if you de-
cided to install Gentium Book, Yum
would note that it requires the package
sil‑gentium‑basic‑fonts‑common, which
is needed with any weight of Gentium
that you install.

Finally, Yum notes whether all depen-
dencies are available and presents every-
thing that needs to be installed in a
table. This table is followed by a second
that lists the transactions (i.e., steps)
needed to complete the installation and
the total amount of hard disk space re-
quired. Only then does Yum offer you a
choice of whether to continue or halt in-
stallation.

Once you press y (for “yes”) to con-
tinue the installation process, Yum be-
gins to download the necessary pack-
ages, showing the progress of each
download and of the overall process.
After the downloads are complete, Yum

installs each package and summarizes
what it has done (a useful step, in that
the original information might easily
have scrolled out of sight). If it is suc-
cessful, a succinct Complete! displays
just before Yum exits (Figure 2).

With apt-get, you would use dpkg to
install a package you had downloaded to
a Debian system; however, with Yum
you would simply use the localinstall
sub-command and not have to switch
basic commands.

To install a newer version of a pack-
age, you can also use install, but a better

choice is the upgrade sub-command be-
cause it can handle the removal of any
obsolete packages – an ability that is es-
pecially useful when you are switching
from one version of a distribution to an-
other. For the same result, you can use
yum update ‑‑obsoletes. If you are cau-
tious, you might prefer to use the
 check‑update sub-command to see what
is available before actually installing
anything. Or, you might prefer to specify
particular packages to upgrade instead.

To upgrade local packages, the sub-
command is localupdate. To uninstall,
use the remove sub-command.

All of these basic sub-commands are
available for use on multiple packages.
The simplest way to handle multiple
packages is to enter a space between
them at the end of the command. Alter-
natively, you might want to use regular
expressions, although generally you
should use the search sub-command first
to see which packages will be affected.

Some Yum repositories organize pack-
ages into groups. For example, in Fedora
11, the package groups include Games,
KDE Desktop, and Publishing. These
groups serve much the same function as
meta-packages on Debian systems, al-
lowing you to install multiple packages
without having to remember them or
edit them separately. Groups have a se-
ries of special sub-commands that in-
clude groupinstall, groupupdate, and
 groupremove, followed by the name of

YumManageMent

66 linux shell handbook

Figure 2: When installing packages, Yum keeps you informed of its progress. Note that it is

checking for DeltaRPMs, which indicates that Yum is using the yum-presto plugin to mini-

mize the size of downloads.

Figure 1: Yum gives you constant messages about exactly what it is doing.

Run A Business, Not An Office

Online. Easy. Secure. Reliable

Be
st

Pr
ice

Gua
ra

nt
ee

!

All you need to run your home business or small office:

the group. For example, yum groupin‑
stall publishing would add all the files in
the publishing group to your system.

Information Sub-Commands
Besides to these basic sub-commands,
Yum also includes several that provide
information or help you to maintain
your system.

The most basic sub-command, list, is
completed by self-explanatory descrip-
tions of the information you want. For
instance, the command yum list installed
displays a compete list of installed pack-
ages. Similarly, yum list available lists all
the packages in all repositories, and yum
list updates lists all available updates.
Other, more specific, descriptions in-
clude extras, which lists packages on
your system that are not listed in en-
abled repositories, and recent, which
lists the latest updates in the reposito-
ries.

When you want more specific infor-
mation about a package, the sub-com-

mand to use is info, followed by the
package name. The info command pro-
vides basic information about the pack-
age: its architecture; its version number
and release; whether it is installed or, if
not, what repository it is in; its license;
and its homepage (Figure 3). Also, you
will receive a single-sentence summary
and a slightly longer description. The
sub-command groupinfo provides simi-
lar information for package groups.

A rarer, but occasionally useful, sub-
command is provides. With the provides
command, you can find which package
includes a particular file or feature (Fig-
ure 4). For example, in Fedora 11, the
command yum list provides firefox re-
turns exactly which
package version is avail-
able or installed as well
as the versions found in
the repositories.

Another means of
tracing references to a
specific package is the

 search sub-command. This function will
locate all packages and dependencies re-
lated to the search term, followed by a
brief description. Similar to apt-cache on
Debian systems, search can be useful for
finding packages when you lack an exact
name or are reasonably sure that a func-
tion must be available somewhere.

All of these information sub-com-
mands frequently give dozens, even
hundred of lines of output. For this rea-
son, consider piping them through the
 less command so that you can scroll
through at your leisure. For example,
with yum list obsoletes | less, you can
browse a list of the installed packages
that are made obsolete by packages in
the repositories.

Maintenance Sub-
Commands
Yum sub-commands also include a se-
ries of utilities to help you maintain and
troubleshoot your system. For instance,
 yum makecache downloads the informa-
tion for all packages in all enabled repos-
itories, which you can use if the infor-
mation is corrupted or if you have re-
cently changed repositories. Similarly,
for the rare time that dependency prob-
lems suddenly emerge, yum resolvedep

ManageMentYum

67linux shell handbook

Figure 4: If you wonder where files or applications come from,

“yum list provides” can give you the information. Both possi-

ble and actual sources are given.

Figure 3: The “ info” sub-command gives you all available information about packages.

67linux shell handbookRun A Business, Not An Office

Online. Easy. Secure. Reliable

Be
st

Pr
ice

Gua
ra

nt
ee

!

All you need to run your home business or small office:

can tell you which packages provide a
missing dependency.

A particularly powerful maintenance
tool is clean, which, like list, is com-
pleted by a description of the informa-
tion source that you want to remove.
However, with the exception of the com-
mand yum clean packages, which re-
moves packages that were downloaded
but not installed, using clean is an act of
desperation.

Running clean followed by any other
option – expire‑cache, headers, meta‑
data, dbcache, or all – removes informa-
tion that Yum requires to operate. The
next time you start Yum after running
clean with these completions, Yum will
rebuild what was deleted, but it could
take as long as 20 minutes to do so, de-
pending on your machine. For this rea-
son, you should only run the clean sub-
command when you are having trouble
with Yum and all other means of trou-
bleshooting have failed. Unlike apt-get’s
clean and autoclean, Yum’s clean is not
for routine maintenance, but for major
problems, and you will only inconve-
nience yourself if you run it casually.

Options
Most of the time, you can use Yum with-
out any options. A few options, such as
‑‑obsoletes, provide useful information to
help you administer software installa-
tion. A great many more, however, en-
able or disable information for various
purposes.

Some options, such as ‑d and ‑e, which
set debugging and error-level reporting,
are largely for developers. The same is
true of ‑v or ‑‑verbose, two equivalent op-
tions that increase the amount of infor-
mation that Yum provides while run-
ning.

Other options are for users who want
to use Yum with a minimum of fuss,
such as ‑‑quiet, which causes Yum to run
without reporting what it is doing. Its
frequent companion is ‑y, which as-
sumes that the answers to all questions
are “Yes” – including the question of
whether you want to proceed after Yum
finishes its initial calculations. In much
the same way, ‑‑nogpgcheck disables
package verification.

Such options save time as well as your
own watchfulness. However, I suggest
that you avoid them on the general prin-
ciple that giving up control is rarely a

good idea. If nothing else, something as
simple as a typing error could start Yum
off on a series of actions that could trash
your system – or at least require some
careful repairs.

Other options are less likely to cause
trouble. The matched pair ‑‑en‑
able‑repo= and disable‑repo= give Yum
the equivalent of apt-get’s pinning and
specify which repositories to use. Also,
you can use ‑‑exclude= to prevent pack-
ages that could cause a conflict from in-
stalling from any source.

Another option that might keep you
out of trouble is ‑‑skip‑broken. If you use
it after Yum reports a missing depen-
dency, it might just allow you to resolve
the difficulty. In some cases, the pack-
ages installed with this option will not
work, but you can make sure that they
do not form a bottleneck that keeps Yum
from working. Once they are installed,
you can then delete them normally.

Plugins
Yum’s commands and options provide
all the functionality most users will
need. However, if you’re looking for
something extra, or you want to see
what the future of Yum might be, take
the time to look at the plugins available
for your distribution. Written in Python,
Yum plugins are available as separate
packages for your distribution, with each
plugin adding new features.

By default, plugins are not turned on.
Before you can use any of them, you
need to open /etc/yum.conf and add or
edit the plugins line in the main section
of the file to read plugins=1.

In Fedora and Red Hat, some of the
most common plugins are available in
the yum-utils package. Approximately
another 20 plugins are also currently
available. Their functionality covers al-
most everything you can imagine and is
too much to describe in detail here.

Briefly, though, some useful Yum
plugins in Fedora 11 are:
•	 yum‑plugin‑versionlock: Prevents a

particular version of a program from
being overwritten.

•	 yum‑plugin‑protect‑packages: Prevents
designated packages (including Yum)
from being removed.

•	 yum‑plugin‑allowdowngrade: Allows
you to downgrade a package – an op-
eration that is needed sometimes for
compatibility between packages.

•	 yum‑plugin‑fastestmirror: Lists the
fastest mirrors for the repositories you
request.

•	 yum‑presto: Instructs Yum to look for
DeltaRPMs rather than straight RPMs.
DeltaRPMs are packages that include
only changes in a package, so by using
them, you can install a package faster
and with less bandwidth.

•	 yum‑plugin‑security: Adds options to
limit upgrades to those for security.

Many, if not all, plugins work auto-
matically, so they do not include any
man pages or help. However, you can
see which plugins are installed on your
system with the command yum search
yum.

Very occasionally, you might find that
a plugin, or perhaps a conflict between
two or more plugins, prevents Yum from
working properly. If that happens, you
can use the option ‑‑disableplugin=
 [plugin name] to help you troubleshoot
by disabling a specific plugin. If you are
in serious difficulties, you can use the
option ‑‑noplugins to run Yum without
any plugins so that, with any luck, you
can recover.

Other Package Managers
Yum is not the only RPM-based package
manager available. Mandriva uses a sim-
ilar tool called urpmi, and openSUSE
uses Smart, a manager that not only re-
sembles Yum but can install from Yum
repositories. Other package management
systems include Gentoo’s Portage and
Conary, which include version control
that allows you to install different re-
leases of the same packages.

However, Yum is almost certainly the
most commonly used package manager
after Debian and Ubuntu’s apt-get. Fur-
thermore, because Yum was developed
years after apt-get, its developers had the
chance to learn from apt-get and im-
prove on it.

Although you probably won’t see
much in Yum that isn’t in apt-get and
its related utilities, you will find a less
haphazard organization. In fact, if you
know apt-get and are encountering
Yum for the first time, you will likely
be struck by how structured Yum is
and how much easier it is to learn than
apt-get. As a program, Yum is an intelli-
gent innovation – and as a remedy for
dependency hell, nothing short of a
 godsend. n

YumManageMent

68 linux shell handbook

