
GNU/​Linux treats everything as a
file. For this reason, learning file
management commands should

be among your first priorities in learning
about the operating system. These com-
mands are easy to remember because
their names are usually abbreviations of
their actions – for example, mv for move
and ls for list – but their options can take
time to learn.

Basically, file management commands
fall into three categories: directory and
file movement, navigation and editing,
and compression. Commands in all three
categories are typically more powerful
(and potentially more dangerous) than
their desktop equivalents, thanks mainly
to file globbing, or the use of standard
patterns to refer to multiple files.

Moving and Editing
Directories and Files
The most basic command for moving di-
rectories and files is cp. Its structure is
simple: cp <options> <filesourcefile>
<target>. By default, cp overwrites any
files of the same name in the target di-
rectory, but you can be cautious and use

the ‑b option to backup any files that are
overwritten, or the ‑u option to overwrite
only files that are newer than the ones in
the target directory (Figure 1).

Also, you can add ‑‑preserve=mode to
choose to preserve file attributes, such
as owner or timestamp, or ‑‑no‑preserve
=mode to have them changed in the
files’ new location. Whether you pre-
serve attributes or not is especially im-
portant when you are logged in as root
and moving files owned by another user
around – say, for a backup of the /home
directory.

Sometimes, you might not want to
waste hard drive space on multiple cop-
ies of the same file, in which case you
might prefer to use ln ‑s file link to create
a symbolic link, or pointer, to the origi-
nal file, which takes up much less space
(Figure 2). Later, if you copy these sym-
bolic links to a backup, you can use cp
‑L to ensure that the original file, not the
link, is used.

Alternatively, you might prefer to
move a file with mv, which takes many
of the same options as cp. Also, use mv
to rename a file, giving it the same direc-

tory path but a different final name (Fig-
ure 3). For instance, if you wanted to
change the name of the file garden.png
while keeping it in the same directory,
you could use the command mv ./gar‑
den.png ./sun‑yat‑sen‑gardens.png.

As you copy or move files, you might
need to create a new directory with
mkdir. Although this is a relatively
straightforward command, you can fine-
tune it by using ‑‑mode=octal‑permis‑
sions to set the permissions for the new
directory or create the directories imme-
diately above it by adding the ‑p (parent)
option.

To delete, use rm (remove) for files
and directories and rmdir for directories.
Don’t forget, though, that, unlike the
desktop, the Bash shell has no Trash
folder. The closest you can get is to cre-
ate a special folder and move files to it
instead of using rm or rmdir.

By default, rm works only on files. To
delete directories with it, you have to
use the ‑r option. As you might imagine,
rm ‑r can remove key system files when
used thoughtlessly, which is why some
users prefer to add ‑‑preserve‑root when
running the command anywhere near
the root directory. In comparison, rmdir
is a much safer option, because it works
only on empty directories (Figure 4).

A completely different approach to file
management is taken by dd, an old Unix
utility that copies bytes or blocks rather
than files. Used mainly by administra-
tors, dd has a non-standard syntax that
is far too complex to detail here. Briefly,
though, dd can be used for such tasks as

We give you an overview of commands for moving, editing, compress-

ing, and generally manipulating files. By Bruce Byfield

Learning file management commands

File Power

Figure 1: The cp command allows you to be both cautious and flexible. Here, the root user

ensures that files with the same name as those being copied are not overwritten and that the

owner of the files does not change.

S
y
ch

u
g
in

a
 E

len
a
, Foto

lia

File ManagementGetting Around

10 linux shell handbook

creating an ISO image from a CD/​DVD,
wiping a disk by filling it with random
data, and duplicating a partition or mas-
ter boot record. Just remember to con-
struct your dd command carefully and to
double-check it. Even more than rm, the
dd command can be hazardous to your
system if you are inattentive.

Navigating and Editing
Directories and Files
Most likely you already know that you
move around the directory tree with the
command cd <directory> – a command
so simple that it has no options. What
you might not know is that cd has sev-
eral shortcuts: cd .. moves to the direc-
tory immediately above the current one,
cd ‑ returns you to the previous direc-
tory, and cd ~ returns you to your home
directory (Figure 5). Combined with the
command history in a virtual terminal,
these shortcuts are enough to give you
the equivalent of the back and forward
buttons in a web browser.

Once you are in a directory, use ls to
view the contents. In many distributions,
you will find that ls is actually an alias of
ls ‑‑color, which displays different types
of files in different colors. Sometimes, it
is an alias of ls ‑‑color ‑‑classify, which
adds the use of symbols such as / to in-
dicate a directory or * to indicate an exe-
cutable file (Figure 6).

For many users, these options are
more than enough. However, sooner or
later, you will likely need the ‑a option,
which displays hidden files – those
whose names start with a period (Figure
7). To pinpoint a file, you might use ‑l to
display file attributes. To help sort files
with ls, options let you sort by size (‑s),
time (‑t), or extension (‑X).

All this information can easily occupy
more lines than your terminal window
displays, so you might want to pipe the
command through less (ls | less) so that
only a screenful of information is visible
at one time.

If you are trying to identify a file, file is
a supplement to ls, identifying the type
of file (Figure 8). If you have symbolic
links, you will want to add the ‑L option
so that you can identify the type of the
original file. Also, you can use ‑z to view
the contents of compressed files (see
below).

Yet another tool for tracking down files
is find. The find command takes so
many options that I will only briefly list
some of the most important ones:
•	 ‑amin <minutes>: Minutes since a

file was accessed.
•	 ‑cmin <minutes>: Minutes since a

file was changed.
•	 ‑atime <days>: Days since a file was

accessed.
•	 ‑amin <days>: Days since a file was

changed.
•	 ‑group <group>: Files that belong to

a particular user group.
•	 ‑user <user>: Files that belong to a

particular user.
•	 ‑maxdepth <number>: The maxi-

mum level of sub-directories in which
to search.

•	 ‑mindepth <number>: The minimum
level of sub-directories in which to
search for newer file names; files that
are newer than the one mentioned in
the option.

•	 ‑perm <permissions>: Designated
permissions.

•	 ‑e <filetype>: Excludes files of a cer-
tain sort from the search. Common file
types include ascii and compress.

When you have located a file, you can
use the touch command to edit its time-
stamps. For example, the command
touch ‑a grocery list.txt 0910311200.00
would change the access time to noon
on October 31, 2009, and you can use
the same date format after ‑m to change
the last modification time. Similarly,
‑t=YYMMDD.ss changes the date and
the time that the file was created. Also
note that the time starts with the last
two digits of the year and ends with the
seconds.

Compressing Files
Compression is less essential now than it
was in the days of 100MB hard drives,
but it continues to be important for cre-
ating backups or sending files as email
attachments. The Bash shell includes
four commands for compression: the
original tar, gzip, bzip2, and – more
rarely – cpio.

When you exchange files with users of
other operating systems, use gzip so they
can open the archive. Gzip’s basic use is
straightforward, with a list of files fol-
lowing the command, but you can use a
variety of options to control what hap-
pens.

To set the amount of compression, you
can use the parameter ‑‑best <number>
or, to set the speed of compression,
‑‑fastest <number>. Both are measured
on a scale of 1 to 9. But remember that

Figure 2: Creating a symbolic link with ln is a space-saving way of having the same file in two

places at the same time.

Figure 3: The mv command does double-duty, both moving files and renaming them.

Figure 4: The rmdir command is much safer to use than rm ‑r, because it can’t delete directo-

ries that still have files in them.

Figure 5: The shortcuts in the change direc-

tory command are much faster than typing

out the entire name of a directory. They

require one or two characters – far fewer

than when typing the names of most direc-

tories in your home.

Figure 6: Many distributions create an alias

for the ls command, so that it automatically

displays different types of files with differ-

ent colors.

Getting AroundFile Management

11linux shell handbook

you need to use the ‑N option to pre-
serve the original files; otherwise, they
are deleted when the archive is created.

To work with files in a gzip archive,
you can use several utilities:
•	 zcat displays files in a gzip archive.
•	 zcmp compares files in a gzip archive.
•	 zdiff lists differences between files in a

gzip archive.
•	 zgrep, zegrep, and zfgrep search for

text patterns in gzip-archived files.
One especially useful utility is gunzip,
which amounts to an alias for gzip be-
cause it uses most of the same options.
But, if you can’t be bothered learning
another command, you can simply use
the command gzip ‑d.

By contrast, the bzip2 command pro-
duces archives that are 10%-20%
smaller than those produced by gunzip.
But, although bzip2 and gzip serve simi-
lar purposes, bzip’s options are consider-
ably different. For one thing, you have to
specify sub-directories, because bzip2
lacks an ‑r option. For another, you use
the ‑z option to compress files and ‑d to
decompress. To keep the original files
after the archive is created, use the ‑k
option.

Like gzip, bzip2 has some related utili-
ties for working with its archives:

•	 bzipcat displays the contents of a file
in an archive, with the same options
as the cat command.

•	 bziprecover helps recover damaged ar-
chived files.

•	 bunzip2 decompresses files.
The differences between gzip and bzip2
can be hard to remember, so many users
prefer to rely on the tar command. The
tar command not only has the advantage
of having options to use gzip and gunzip
(‑z) or bzip2 (‑j), but it also offers far
more control over exactly how you com-
press files.

In fact, its options run into the dozens
– too many to detail here. For example,
you can use ‑‑exclude <file> to exclude
a file and ‑p to preserve the permissions
of a file. If you want to preserve a direc-
tory structure, use ‑p. To be safe when
decompressing, use ‑k to prevent any ac-
cidental overwriting of files.

The tar command also includes its
own built-in utilities in many cases. To
add one archive to another, use the for-
mat tar ‑‑append <tarfile1> <tar‑
file2>; to update an archive with newer
versions of files with the same name,
use the ‑u option; or to compare the files
in an archive with other files, use the
format tar ‑‑compares <tarfile files>.

The fourth compression command,
cpio, has fallen out of favor in recent
years, probably because its format is
non-standard. For instance, to create an
archive with cpio, you have to pipe ls
through it and specify the output to a
specific file with ls | cpio ‑o > <output‑
file.cpio>. That said, cpio has even more
options than tar, including such power-
ful alternatives as the ability to archive
an entire directory tree and create ar-
chives in multiple formats (of which
TAR is the only one that is widely used),
as well as numerous options to view and
edit already-archived files. But unless
you are a system administrator or an old
Unix hand, chances are you will rarely
see cpio used.

Extending File Management
with Globbing
One reason shell commands are so pow-
erful is that they can work with multiple
files. With many commands, the easiest
way to work with multiple files by enter-
ing a space-delimited list directly after
the command. However, the most con-
cise and efficient way to handle multiple
files is through file globbing.

File globbing refers to the use of regu-
lar expressions (often abbreviated to
regex), pattern matching, metacharac-
ters, or wild cards. The terms are not
quite synonymous, although they are
mostly used as if they were. But, what-
ever term you use, it refers to a string of
characters that can stand for many dif-
ferent strings.

The most widely used glob in the Bash
shell is the asterisk (*), which stands for
any number of unknown characters.
This glob is especially useful when you
want to find files that share the same ex-
tension. For instance, the command ls
*.png lists all the .png graphics in the
current directory.

By contrast, a question mark (?)
stands for any single character. If you
enter the command ls ca?.png, the list of
matches will include the files cat.png
and cab.png, but not the file card.png,
which contains two characters after ca.

From these simple beginnings, globs
can quickly become more elaborate. To
specify specific characters, you can use
square brackets, so that holiday‑[12].png
locates files holiday-1.png and holiday-2.
png, but not holiday-3.png (Figure 9).
Also, you can specify a search for a

Figure 7: In a home directory, adding the ‑a option to ls gives a completely different view by

showing hidden files.

File ManagementGetting Around

12 linux shell handbook

regex at the start (^) or the end ($) of a
line. Similarly, you can search at the
start of a word with \< or the end of a
word with \> – and these are simply a
few common possibilities. Using globs is
an art form, and experts rightly pride
themselves on their ability to construct
elaborate and elegant globs.

But what if you want to work with a
metacharacter? Then you put a back-
slash (\) in front of it. For instance, \\ in-
dicates that you are looking for a back-
slash, not a directory. The backslash is
known as an escape character, and it sig-
nals that the command should read what
follows literally, instead of as a glob.

Globs can be especially useful when
you want a selected list from a directory
full of files or when you are using one of
the grep commands to find content in-
side a file. However, be careful about
using globs with commands like rm or
mv that change or rearrange the content
of your hard drive – if you don’t, a com-
mand can have disastrous consequences.
To be safe, consider using a newly con-
structed glob with the innocuous ls com-

mand, so you can see what
files it might affect.

Learning that Pays
File management commands
have a long history in Bash.
During the course of their
development, they have ac-
cumulated options the way
ships accumulate barnacles
– constantly and apparently
haphazardly.

However, often, the op-
tions are simpler than they
first appear. For example, you can be
fairly certain that most file management
commands will use ‑r to include sub-di-
rectories and their contents and ‑v to
print a detailed description of what they
are doing to the terminal. Similarly, to
force a command to work, regardless of
consequences, you generally use ‑f. Add-
ing the ‑i option, however, means that
every action needs to be confirmed by
you before it happens. Even with such
hints, these commands can take a long
time to master.

In fact, for basic actions, they might
offer little more than a graphical file
manager can. But, if you try to do some-
thing more intricate – such as specifying
how symbolic links are going to be
treated or excluding a file from an ar-
chive – the file management tools easily
outclass their desktop equivalents. If you
learn some of the less straightforward
options for these commands, you’ll soon
understand why many experts prefer the
command line for file management over
anything that the desktop has ever man-
aged to devise. n

Figure 9: All you need is a few regular expressions to

increase the flexibility of commands. Here, their use

greatly simplifies the finding of files.

Figure 8: The file command identifies the format of files,

helping you identify them.

2010 Conferences

USENIX: THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

USENIX TECHNICAL CONFERENCES WEEK

JUNE 21–25, 2010, BOSTON, MA, USA
http://www.usenix.org/events/#june09
Included in the week: USENIX ATC ’10, WebApps ’10, WOSN 2010,
HotCloud ’10, HotStorage ’10, and more

19TH USENIX SECURITY SYMPOSIUM
(USENIX SECURITY ’10)

AUGUST 11–13, 2010, WASHINGTON, DC, USA
http://www.usenix.org/sec10
Co-located events: USENIX HealthSec ’10 and more

9TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN
AND IMPLEMENTATION (OSDI ’10)
Sponsored by USENIX in cooperation with ACM SIGOPS

OCTOBER 4–6, 2010, VANCOUVER, BC, CANADA
http://www.usenix.org/osdi10
Check the Web site for co-located event info.

24TH LARGE INSTALLATION SYSTEM ADMINISTRATION
CONFERENCE (LISA ’10)

NOVEMBER 7–12, 2010, SAN JOSE, CA, USA
http://www.usenix.org/lisa10

8TH USENIX CONFERENCE ON FILE AND STORAGE
TECHNOLOGIES (FAST ’10)
Sponsored by USENIX in cooperation with ACM SIGOPS

FEBRUARY 23–26, 2010, SAN JOSE, CA, USA
http://www.usenix.org/fast10
Co-located events: SustainIT ’10 and TaPP ’10

7TH USENIX SYMPOSIUM ON NETWORKED SYSTEMS DESIGN
AND IMPLEMENTATION (NSDI ’10)
Sponsored by USENIX in cooperation with ACM SIGCOMM and
ACM SIGOPS

APRIL 28–30, 2010, SAN JOSE, CA, USA
http://www.usenix.org/nsdi10
Co-located events: LEET ’10, INM/WREN ’10, and IPTPS ’10

2ND USENIX WORKSHOP ON HOT TOPICS IN PARALLELISM
(HOTPAR ’10)
Sponsored by USENIX in cooperation with ACM SIGMETRICS, ACM
SIGSOFT, ACM SIGOPS, ACM SIGARCH, and ACM SIGPLAN

JUNE 14–15, 2010, BERKELEY, CA, USA
http://www.usenix.org/hotpar10

STAY CONNECTED WITH USENIX http://www.usenix.org/facebook http://twitter.com/usenix

See our full conference schedule at www.usenix.org/events

Getting AroundFile Management

13linux shell handbook

