
ble, because FreeType2 is a widely sup-
ported and used library. Thus, package
maintainers will probably be able to cre-
ate package dependencies so that the li-
brary is automatically installed when
your package is, and life is good.

However, say you also want your soft-
ware to install and work on Windows.
Now, you are faced with a choice: How
do you deal with the need for FreeType2?
Do you document the dependency and
simply hope users will figure out how to
download and install FreeType2 on Win-
dows? That’s probably not your best
choice.

Alternatively, you could find a copy of
FreeType2 for Windows and bundle it
with the Windows installer, but now
you’re installing two applications and
having to maintain an internal build of
FreeType2 (or at least verify that the
build you’re using works on Windows as
expected).

Or, you can simply get a copy of the
FreeType2 source code and include it as
a component or module of your soft-
ware. When you build the program, you
can embed FreeType2 into it, and,
presto, you have FreeType2 support in
your application. Everything works, and
you don’t have to deal with external de-
pendencies.

But, software isn’t a static entity. Dur-
ing the last year, several security flaws
have been found in FreeType2. Applica-
tions like Firefox that embed FreeType2
might not be affected by all the vulnera-
bilities, but it’s probably affected by
some of them. So, as a user or adminis-
trator, you can’t simply upgrade Free-
Type2 on your systems and avoid Free-
Type2 issues.

Because Firefox uses an embedded
copy of FreeType2, you’ll need to install
updated versions for Firefox once they
provide an update with their internal
version of FreeType2 that has been cor-
rected. The good news, however, is that
Firefox is a pretty responsive project and
the developers fix security issues
promptly. But, even a responsive project
can makes mistakes or miss a security

I
nteroperability is a good thing; it
enables us to use security tools
across multiple plat-
forms (like

OpenID and
OSSEC) and
combine
data from
multiple
platforms
into
tools
like Pre-
lude,

right? Code reuse is also good – why re-
invent the wheel if someone is giving
away really nice all-weather tires? Unfor-

tunately, when it comes to interopera-
bility, not everyone does a good

job of implementation. In fact,
efforts to achieve compatibil-
ity and interoperability often
can make a real security
mess.

Embedded
Libraries
I can’t imagine the horror
that developers face. For ex-
ample, say you’re building an
app, and it needs to do some

font rendering. No prob-
lem, right? You can just

call a font library
such as FreeType2
and use it to parse
and output the
data. Well … on
Linux, this will
probably work
without too
much trou-

Interoperability and code reuse

A Sticky
Mess
Developing cross-platform apps can be difficult and error

prone. We offer some tips to ease the work. By Kurt Seifried

Kurt Seifried is an Information Security
Consultant specializing in Linux and net-
works since 1996. He often wonders how
it is that technology works on a large
scale but often fails on a small scale.

 Kurt SEifriEd

56

Features
Security Lessons: Interoperability

February 2012 Issue 135 lInux-magazIne.com | lInuxpromagazIne.com

056-057_kurt.indd 56 12/13/11 3:37:10 PM

update from the upstream software pro-
vider.

find Embedded Libraries
So, how do you find embedded copies of
libraries like FreeType2? The answer is:
Not easily. Sometimes an embedded li-
brary will only require a single file, and
if the name has changed, good luck find-
ing it. You could manually grep files for
version and identification strings, but
this process is error prone and could
miss something (what if the version in-
formation was removed?).

Package Clone detection
Fortunately, Silvio Cesare decided to
work on this problem [1]. Using a com-
bination of file names and fuzzy file
hashing (fuzzy hashing allows similar
inputs to be identified), a large graph
(nodes representing software are con-
nected to other nodes where a match is
indicated) is created. That graph can
then be searched for cliques, which tend
to indicate software packages that con-
tain embedded copies of other software
packages. The software is available
under the GPL version 3 and works for
RPM- and DEB-based distributions, giv-
ing pretty wide coverage. Once you’ve
run the software and identified outstand-
ing issues, how do you prevent the prob-
lems from occurring in the future?

The Debian project [2] has taken the
stance that embedded libraries (some-
times called convenience copies) should
not be used and that a separate package
should be created if the library is needed
but does not exist. A proposal from the
Fedora project [3] has taken a slightly dif-
ferent view, acknowledging that embed-
ded libraries might be needed in certain
cases. In this case, a provides statement
should be included in the spec file for the
package, so that later embedded copies
of libraries can be found using the com-
mand rpm ‑q ‑‑provides <package name>,
which will provide output such as:

Provides: bundled(zlib) = 1.1.14

This can be grepped easily and used
with automated tools.

Other Cross-Platform
Problems
Some developers are not content simply
to embed libraries. One example of how

this can go horribly wrong is the Calibre
e-book management software. In an ef-
fort to allow users simply to plug their
USB-based e-books into their computers
and have the filesystem mounted auto-
matically, the author of Calibre wrote a
“helper” program. To mount filesystems,
of course, you need root privileges, so
the helper program was setuid root. Un-
fortunately, half a dozen vulnerabilities
were found in it [4], including the ability
to execute any program as root (oops).

Additional vulnerabilities were found
allowing any su’ers to mount arbitrary
filesystems in arbitrary locations. For ex-
ample, by mounting on top of /etc or
/usr, an attacker could trivially compro-
mise the system and take control of it.
Fortunately, a resolution was found to
this problem, and the helper program
was removed (well, it was replaced by a
stub program that simply exits). The les-
son here is that a seemingly simple task
can have extreme security conse-
quences.

Other People’s Code
Finally, I will mention one of the most
serious examples of code reuse leading
to security incidents. Last year, I wrote
about plugin security [5], and one of the
programs I specifically mentioned was
WordPress. Unfortunately, what has
come to pass is far worse than any
worst-case scenario I imagined. Word-
Press plugins contain PHP code that is
executed, but they are easy to identify
and relatively easy to upgrade. Word-
Press themes can also contain PHP code
and helper applications in the form of
PHP scripts. One such application was
the TimThumb.php program, which pro-
vided image resizing capabilities in
WordPress blogs. This program was
shipped with both traditional plugins
and with a wide number of themes
(Google indicates more than 350,000 in-
stances of “timthumb.php” in URLs).

Unfortunately, the program contains a
trivially exploitable flaw [6] that can be
used to execute arbitrary PHP code on
servers with timthumb.php installed. The
attacker simply tells TimThumb to fetch
a remote URL, which it does and then
executes. As far as I know very few plug-
ins and themes shipping Tim Thumb
have updated their internal copies. My
advice is to run locate timthumb.php
across all your servers and ensure that

you replace all instances with an up-to-
date copy [7]. Then, you should check
for signs of intrusion (check your
wp‑config.php for strange include direc-
tives).

Conclusion
Developers face some difficult decisions.
Re-inventing the wheel is slow and error
prone. My advice is to stick to packages
that ship as standard (Debian [8], Fedora
[9], etc.) because they are already in the
system and usually are well maintained.
If you need an external library that isn’t
available, please package it separately so
that it is very obvious which version is
included. If that’s not possible (because
you need to modify the library signifi-
cantly or use an older version for com-
patibility reasons), make it abundantly
clear that it’s there. Include the library in
the package metainfo (e.g., the rpm ‑q
‑‑provides), document it, and ideally
keep the file names the same so that
people can find it easily. Also, make sure
to document where you got the source
code. And, please – I implore you – let
the upstream vendor know that you’re
using it and sign up for any security or
notification list they have. nnn

[1] Silvio Cesare – PackageCloneDetec-
tion: https:// github. com/ silviocesare/
 PackageCloneDetection

[2] Debian – Source Packages:
http:// www. debian. org/ doc/
 debian‑policy/ ch‑source. html

[3] Fedora – No Bundled Libraries:
https:// fedoraproject. org/ wiki/
 Packaging:No_Bundled_Libraries

[4] Calibre – SUID Mount Helper has 5
Major Vulnerabilities: https:// bugs.
 launchpad. net/ calibre/ +bug/ 885027

[5] “Reduce Your Risk” by Kurt Seifried,
Linux Magazine, December 2010:
http:// www. linuxpromagazine. com/
 Issues/ 2010/ 121/ Reduce‑Your‑Risk/
 %28kategorie%29/ 0

[6] WordPress TimThumb.php Vulnera-
bilities: http:// www. exploit‑db. com/
 exploits/ 17872/

[7] TimThumb.php latest version:
http:// timthumb. googlecode. com/
 svn/ trunk/ timthumb. php

[8] Debian Packages: http:// www. debian.
 org/ distrib/ packages

[9] Fedora Package Database: https://
 admin. fedoraproject. org/ pkgdb

 infO

Features
Security Lessons: Interoperability

57lInux-magazIne.com | lInuxpromagazIne.com Issue 135 February 2012

056-057_kurt.indd 57 12/13/11 3:37:10 PM

