
N
ormally when I talk about virtu-
alization in Linux, I go straight
to system virtualization using
tools like KVM or Xen, to name

two. But some interesting options aren’t
quite as well known. One such example
is cgroups [1] and Linux Containers [2]
(LXC), which sits on top of cgroups. In a
nutshell, LXC uses cgroups to create a
restricted view of the host operating sys-
tem. Within the LXC guest environment,
you can only see what the admin allows
you to see of the host system; you can
have a separate process space, for exam-
ple and also create a separate filesystem
for the guest.

So why would you want to use a tech-
nology like LXC instead of a full system

virtualization platform like KVM or Xen?
LXC has several advantages: For one
thing, it has virtually no overhead, and it
provides a degree of flexibility because
of its ability to share resources between
different LXC guests. (I know, these
seem counterintuitive because the goal
is to segregate them from each other,)
Also, LXC supports not only virtualizing
a running instance of an operating sys-
tem (more on this later) but also individ-
ual applications, for which devoting an
entire virtual machine is overkill. To see
a good example of this, you can read
more about what Google is doing with
ChromeOS [3].

Installation and Basic
Configuration
The good news is that cgroups is in the
Linux Kernel by default, and the user-
space LXC tools are included in most dis-
tributions (Debian, Fedora, etc.). A sim-
ple

apt‑get install lxc bridge‑utils U

 debootstrap

or

yum install lxc bridge‑utils

will do the trick. The next steps you will
need to take are configuring a network
bridge device (this is optional), adding a
cgroup definition to fstab,

cgroup /cgroup cgroup defaults 0 0

and then creating the directory and
mounting it

mkdir ‑p /cgroup

mount /cgroup

with the preceding two commands.

Creating an LXC
Container
Now comes the tricky part: you’ll need
to create an LXC container to host the
application or the operating system. It is
important to note that when running an
operating system under LXC, you won’t
be running a separate kernel and so on,
because the guest running inside of LXC
will essentially be a separate “view” of
the entire operating system running on
the system (this can be as separate or as
shared as you want). The easiest way to
create an environment within an LXC in-
stance is to use a tool such as deboot‑
strap, which also includes specific LXC
templates for setting up instances.

You will need to correct the template
file /usr/lib/lxc/templates/lxc‑debian
so it installs squeeze (Debian GNU/
Linux 6) instead of lenny (Debian GNU/
Linux 5). This setp will also require you
to change the dhcp package name, and
you’ll also need to add the lxc tools (and
libcap2 so lxc-setcap works) to the
image so that it can be started correctly.
The abridged patch file is:

‑dhcp‑client,\

+isc‑dhcp‑client,\

+lxc,\

+libcap2,\

‑lenny $cache/partial‑$arch U

 http://ftp.debian.org/debian

+squeeze $cache/partial‑$arch U

 http://ftp.debian.org/debian

Fleet and flexible cgroups and Linux Containers

Virtual Host
The big virtualization tools like KVM and Xen can’t compete

on a small scale with resource-spare cgroups and Linux

Containers. By Kurt Seifried

Kurt Seifried is an Information Security Consultant specializing in
Linux and networks since 1996. He often wonders how it is that
technology works on a large scale but often fails on a small scale.

 Kurt SeIfrIed

56

Features
Security Lessons: cgroups and LXC

SEPTEMBER 2011 ISSuE 130 lInux-MagazInE.coM | lInuxPRoMagazInE.coM

056-057_kurt.indd 56 7/19/11 3:15:08 PM

Now you’ll be able to create quickly a
bare-bones instance of Debian for LXC to
use. Simply run the commands:

mkdir ‑p /var/lib/lxc/vm0

/usr/lib/lxc/templates/lxc‑debian U

 ‑p /var/lib/lxc/vm0/

To execute it, run:

lxc‑start ‑n vm0

By default, the root password is root.
Then, you can configure the system, add
additional packages, and modify as
needed. Alternatively, before starting the
LXC hosted guest, you can use chroot to
enter the filesystem of the guest you cre-
ated. The advantage of this is that you’ll
have access to the host networking, and
you can easily change root’s password,
install additional packages, and gener-
ally configure the system as if it were
running and you were logged in to it:

chroot /var/lib/lxc/vm0/ /bin/bash

Creating a container for an application is
a similar process; however, you will
most likely not want to replicate an en-
tirely separate system. By mounting di-
rectories, such as /lib inside the guest as
/lib with read-only access, for example,

lxc.mount.entry = /lib U

 /var/lib/lxc/vm0/rootfs/lib none U

 ro,bind 0 0

you can prevent a guest from making
changes and avoid having to update
more than one system.

LXC Network
Configuration
Network configuration is one of the
trickier parts of LXC configuration be-
cause you have several options. LXC
supports five kinds of network interface:
empty, veth, vlan, macvlan, and phys. The
empty type simply sets up a loopback in-
terface, veth will attach an interface
within the guest to a bridge interface
hosted on the system, and vlan will at-
tach an interface to one on the host. The
macvlan interface is more interesting: It
binds the interface to one on the host
with a virtual MAC address assigned to
it, allowing virtually any type of network
activity (multiple IP addresses bound to

the interface, spoofing, sniffing, etc.) to
take place. Generally speaking, you’ll
probably want to use veth, which offers
a degree of control and can prevent
abuse to some degree. For more flexibil-
ity, macvlan allows virtually any network
operation you would normally have ac-
cess to. This topic is covered in detail in
the lxc.conf man page, which also con-
tains some excellent examples.

Improving LXC
Performance
Say you want to set up virtual web host-
ing for a few dozen clients and have de-
cided to use LXC. Unlike KVM or Xen,
you can easily share directory structures
in a read-only configuration, meaning
you can deploy a template system (with
standard /lib, /usr, etc.) used by all the
running instances (which would, of
course, have their own /etc, /var, and
other directories that they actually need
to write to). On its own, this setup will
work quite well, especially if Linux
caches all the files into memory, but you
can also use tmpfs to mount the template
system into memory, meaning, the ma-
jority of standard read-based disk I/ O on
client systems, will never touch a drive,
speeding things up considerably. The
only disk I/ O that will actually occur is
clients serving files, writing logfiles, etc.

Other LXC tips and
tricks
LXC also offers some other tricks that are
especially useful for developers and se-
curity folks such as myself. The
lxc‑freeze and lxc‑unfreeze commands
can be used to freeze the system and
then resume operations. Combined with
tools like diff, this method can be used
to compare system states – for example,
before and after installing a program – or
to test a binary-only program. Another
thing that comes to mind is the possibil-
ity of shipping applications within an
LXC container – the only required exter-
nal dependency being the system kernel.
With the lxc‑execute command, a user
can start the program and even have ac-
cess to their local X session (so things
will “just work,” which is nice). And for
confining interactive shell accounts, LXC
works much better than chroot.

Also, if you want to use LXC as a user,
you will need to run lxc‑setuid and
lxc‑setcap, both on the host and within

any guest systems running LXC. Other-
wise, things like lxc‑init will fail be-
cause they do not have the needed privi-
leges to mount the /proc filesystem, for
example.

cgoups
But what about cgroups, the underpin-
ning of LXC? cgroups can be used not
only to restrict the view of the system
but can be also used to enforce quotas
on resource usage such as CPU, memory,
and disk I/ O. Traditionally, disk quotas
(how much disk you can use) have al-
ways been supported, but with no re-
strictions on how you use it. A program
that causes large amounts of small ran-
dom writes can severely affect system
performance by causing the disk drives
to thrash, and on a shared system, espe-
cially one with paying customers, this
will not do. Interacting with cgroups is a
lot like using the proc psuedo-filesystem
on Linux. cgroups creates a virtual file-
system, and from this, you can read set-
tings (cat /cgroups/some‑setting) and
set settings (echo "foo" > /cgroups/
some‑setting). For a complete list of set-
tings and options, refer to the documen-
tation (it’s extensive).

One Last trick
Like most people, I get nervous about
giving out shell access to users. But with
LXC, you can create a container for a
user, then simply create a shell script to
launch it when the user logs in and set
that shell as their login shell (remember
to add it to /etc/shells):

#!/bin/bash

/usr/bin/lxc‑execute ‑n vm0 /bin/bash

When the user logs in, they get dropped
into an LXC environment that can easily
be restricted but can also give them ac-
cess to setuid programs and so forth
safely. nnn

[1] cgroups: http:// www. kernel. org/ doc/
 Documentation/ cgroups/

[2] Linux Containers:
http:// lxc. sourceforge. net/

[3] System hardening:
https:// sites. google. com/ a/
 chromium. org/ dev/ chromium‑os/
 chromiumos‑design‑docs/
 system‑hardening

 INfO

Features
Security Lessons: cgroups and LXC

57lInux-MagazInE.coM | lInuxPRoMagazInE.coM ISSuE 130 SEPTEMBER 2011

056-057_kurt.indd 57 7/19/11 3:15:08 PM

