
A few months ago I wrote about
the Slowloris attack on web
servers [1], the short version of

which is: Attackers connect and hold
connections open, using very few re-
sources on their end, but soaking up all
your available sockets and preventing
any legitimate users from connecting.
Since then, a number of other denial-of-
service types of attack have been an-
nounced against web servers, web appli-
cations, and other services. This got me
thinking: How can programmers deal
with these issues in a generic way to re-
duce their impact?

The answer, of course, is rate limiting.
The funny thing is that in the network
world we live in, rate limiting and flow
control are critical elements of IP-based
networks that have been worked on lit-
erally for decades, and a number of great
solutions have been found for the vari-
ous problems. Unfortunately, most appli-
cation-level programmers are unaware of
this work or simply don’t know why you
would want to bother with rate limiting
and flow control (and it’s not like there
isn’t enough work dealing with feature
requests and bug reports).

Examples of Attacks
Rate limiting is just as important as how
you rate limit. One example of an attack
is using search functionality with multi-
ple expressions to consume large

amounts of CPU and memory, as well as
database resources. Another classic at-
tack against FTP servers is to execute a
command such as ls */../*/../*/../*/../*/.
./*/../*, which causes an insane number
of directory lookups and, in some cases,
could even cause the server to crash.

Airline reservation systems let you se-
lect a seat, then they hold it and make it
unavailable to others for a small period
of time (e.g., 10 to 15 minutes) to make
sure someone else doesn’t buy it while
you pay for it. An attacker can repeat-
edly start a transaction to buy seats on
the plane but never finish them, prevent-
ing anyone else from reserving a seat.

Spammers that crawl through your
website automatically can make an en-
tire copy of your content so they can put
it on their website with ads and make
some money. Or you might simply want
to ensure that your paying customers
have preferred access to the servers that
also host your free users.

Where to Rate Limit
Once you’ve determined what you want
to rate limit, you need to figure out
where to do it. If you’re worried about
people screen-scraping a website, for ex-
ample, it does no good to limit the num-
ber of new connections per IP address if
you have HTTP Keep-Alives enabled (al-
lowing clients to make more than one re-
quest per connection to the web server).
Similarly, if your biggest concern is

weak passwords on user ac-
counts (and thus the sup-

port issues of dealing
with hacked ac-

counts), you might
simply want to
limit the effec-

tiveness of
brute

force password-guessing attacks yet
allow users to view as many web pages
as they want once they are logged in.

Generally speaking, you will want to
rate limit within the application because
this gives you the most flexibility and
control. However, if your concern is
with people connecting to the applica-
tion (i.e., it has a significant start-up
time) or you do not have the ability to
modify the application (it’s closed
source or simply too big and convoluted
to be modified easily), you might want
to consider proxying access or using an
additional layer to protect the system.

The Problem with Leaky
Buckets
So how exactly can you rate limit some-
thing? The simplest way is to use the
leaky bucket [2] algorithm (Listing 1).
With this fairly simple program, you
simply define an acceptable rate – such
as one search every 12 seconds (or five
per minute). As work comes in, it is
placed in a “bucket.” At a rate you deter-
mine, work is taken out of the bucket. If
the bucket is full (i.e., work is coming in
faster than it can be processed), you
simply discard the new work. This en-
sures that work being processed never
exceeds a maximum amount.

But this scheme has a significant prob-
lem: What if a client needs to execute
more than 10 searches quickly and only
does this once in a while? Almost imme-
diately they’re going to get annoyed with
you when their sixth search fails and
they have to wait a minute to do the rest.
So how can you deal with bursty behav-
ior, but still rate limit what people are
doing to prevent serious damage?

The Advantage of Token
Buckets
The token bucket [3] can handle burst-
ing traffic (busy now, quiet later) by al-
lowing a certain rate of traffic (say, five
searches every 60 seconds) and allowing
those searches to happen in a period of

Maybe we should listen to those network guys. By Kurt Seifried

Making sure your application is available

Rate Limiting

Security Lessons: Rate LimitingSYSADMIN

58 ISSUE 110  January 2010

one second, then making the user wait
60 seconds before he can do any more
searches.

The algorithm can be further modified
to include a higher maximum capacity,
allowing up to 10 tokens to be stored, for
example, with a rate limit of five per
minute, allowing users to initially do 10
searches in the first minute but only five
per minute afterward (until they give the
system a minute or two to recover).

This limiting can be done on a global
basis, a per-IP address basis (simply
have an array list of IPs and their current
allowed searches and last time), or even
a per-user basis (i.e., one leaky bucket
per user), or the methods can be com-
bined, allowing each user five searches
per minute and a system total of 50
searches per minute (assuming more
would make your system become too
slow to use).

Distributed Token Buckets
A common flaw made with rate-limiting
systems that occurs in applications with
more than one server (which is almost
all major applications nowadays) is that
the various servers and system compo-
nents do not properly share state. For ex-
ample, a site with five front-end web
servers may implement a download rate
limit or a limit on login attempts for cli-
ents, but if they do not communicate

with each other, an attacker would be
able to execute five times the rate-lim-
ited downloads or attacks by hitting
each server at the same time. Of course,
the solution is to use a shared state. Two
possible solutions are to use a database
with row-level locking (reducing the
amount of contention for checking and
updating the shared state information)
or use something very lightweight that is
also extremely fast, such as memcached
[4]. The memcached server not only
supports storing keys and values associ-
ated with the keys but can also store a
counter (a 64-bit integer) that can be in-
cremented or decremented atomically
(i.e., multiple processes won't step on
each others’ toes) with the incr and decr
commands. In this way, you can simply
insert a key with a value equivalent to
the user name, IP address, or whatever
you are using and then maintain a coun-
ter. For each attempt to log in, you incre-
ment the counter, and you regularly dec-
rement the counter by a control process
to ensure that attempts are expired.

Lockouts vs. Timeouts
Another aspect of rate limiting is the
ability to reduce problems caused by
lockouts – systems that try to protect
themselves by locking out users after a
certain number of failures, for example.
Lockouts are prone to spoofing attacks.

If attackers can make themselves look
like legitimate users (i.e., by trying to
use the victim’s username to log in),
they might be able to lock out that user
(assuming you lock an account out after
three bad passwords). Alternatively, if
you have customers or users coming
from behind proxy servers, you might
end up with one bad user blocking ac-
cess for a group of legitimate users.

The use of increasingly long timeouts
(such as doubling the waiting period
each attempt) can be just as effective as
a lockout but has the added (dis)advan-
tage that when the attack stops, the
timeout will eventually reset, allowing
whatever caused the timeout to start
again. Of course, depending on what you
want, you can set the timeouts appropri-
ately to either allow users into their ac-
counts or block spammers for extended
periods of time.

What Is Your Quest
A final option available in conjunction
with rate limiting is allowing users of a
system to prove that they do not have
hostile intentions (despite their “bad”
behavior). For example, if you send too
many similar-looking queries to Google
in a short time period you might get a
web page saying “Sorry” that directs you
to enter a CAPTCHA string to prove you
are human and not an automated pro-
gram or malicious program. All of which
is much better than a user staring at a
blank and non-responsive web page. n

[1]	� “Apache HTTPD” by Kurt Seifried,
Linux Magazine, September 2009,
pg. 52, http://​www.​
linuxpromagazine.​com/​Issues/​2009/​
106/​APACHE‑HTTPD

[2]	� Leaky Bucket: http://​en.​wikipedia.​
org/​wiki/​Leaky_bucket

[3]	� Token Bucket: http://​en.​wikipedia.​
org/​wiki/​Token_bucket

[4]	� Memcached: http://memcached.org/

INFO

01 �searches=5

02 �per_second=60

03 �current_allowed=searches

04 �last_check = time()

05 �while process(search_terms):

06 � # we determine how many seconds since the last search

07 � time_now=time()

08 � time_passed = time_now ‑ checked_at

09 � # and set when our last search was

10 � checked_at=time_now

11 � # add tokens to bucket:

12 � current_allowed += time_passed * (searches / per_second)

13 � # check if we have any tokens

14 � if (current_allowed > searches):

15 � # we have reached our max. tokens

16 � current_allowed = searches

17 � if (current_allowed < 1):

18 � #partial token, ignore search

19 � discard_search()

20 � else:

21 � # we have at least one token

22 � do_search()

23 � # and we "spend" the token

24 � current_allowed = current_allowed ‑ 1

Listing 1: Leaky Bucket Pseudo-Code

SYSADMINSecurity Lessons: Rate Limiting

59ISSUE 110January 2010

Kurt Seifried is an
Information Secu-
rity Consultant spe-
cializing in Linux
and networks since
1996. He often won-
ders how it is that technology works
on a large scale but often fails on a
small scale.

T
H

E
 A

U
T

H
O

R

